Random networks of carbon nanotubes and metallic nanowires have shown to be very useful in the production of transparent, conducting films. The electronic transport on the film depends considerably on the network properties, and on the interwire coupling. Here we present a simple, computationally efficient method for the calculation of conductance on random nanostructured networks. The method is implemented on metallic nanowire networks, which are described within a single-orbital tight binding Hamiltonian, and the conductance is calculated with the Kubo formula. We show how the network conductance depends on the average number of connections per wire, and on the number of wires connected to the electrodes. We also show the effect of the inter/intrawire hopping ratio on the conductance through the network. Furthermore, we argue that this type of calculation is easily extendable to account for the upper conductivity of realistic films spanned by nanowire networks. When compared to experimental measurements, this quantity provides a clear indication of how much room is available for improving the film conductivity.

1.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature (London)
432
,
488
(
2004
).
2.
J.
Lewis
,
S.
Grego
,
B.
Chalamala
,
E.
Vick
, and
D.
Temple
,
Appl. Phys. Lett.
85
,
3450
(
2004
).
3.
W. B.
Jackson
,
R. L.
Hoffman
, and
G. S.
Herman
,
Appl. Phys. Lett.
87
,
193503
(
2005
).
4.
Z. C.
Wu
,
Z. H.
Chen
,
X.
Du
,
J. M.
Logan
,
J.
Sippel
,
M.
Nikolou
,
K.
Kamaras
,
J. R.
Reynolds
,
D. B.
Tanner
,
A. F.
Hebard
, and
A. G.
Rinzler
,
Science
305
,
1273
(
2004
).
5.
S.
De
,
T. M.
Higgins
,
P. E.
Lyons
,
E. M.
Doherty
,
P. N.
Nirmalraj
,
W. J.
Blau
,
J. J.
Boland
, and
J. N.
Coleman
,
ACS Nano
3
,
1767
(
2009
).
6.
H. Z.
Geng
,
K. K.
Kim
,
K. P.
So
,
Y. S.
Lee
,
Y.
Chang
, and
Y. H.
Lee
,
J. Am. Chem. Soc.
129
,
7758
(
2007
).
7.
P. N.
Nirmalraj
,
P. E.
Lyons
,
S.
De
,
J. N.
Coleman
, and
J. J.
Boland
,
Nano Lett.
9
,
3890
(
2009
).
8.
A.
Behnam
and
A.
Ural
,
Phys. Rev. B
75
,
125432
(
2007
).
9.
J.
Hicks
,
A.
Behnam
, and
A.
Ural
,
Phys. Rev. E
79
,
012102
(
2009
).
10.
P. E.
Lyons
,
S.
De
,
F.
Blighe
,
V.
Nicolosi
,
L. F. C.
Pereira
,
M. S.
Ferreira
, and
J. N.
Coleman
,
J. Appl. Phys.
104
,
044302
(
2008
).
11.
D. J.
Mowbray
,
C.
Morgan
, and
K. S.
Thygesen
,
Phys. Rev. B
79
,
195431
(
2009
).
12.
S.
Latil
,
S.
Roche
,
D.
Mayou
, and
J. -C.
Charlier
,
Phys. Rev. Lett.
92
,
256805
(
2004
).
13.
C. G.
Rocha
,
A.
Wall
,
A. R.
Rocha
, and
M. S.
Ferreira
,
J. Phys.: Condens. Matter
19
,
346201
(
2007
).
14.
L. F. C.
Pereira
,
C. G.
Rocha
,
A.
Latgé
,
J. N.
Coleman
, and
M. S.
Ferreira
,
Appl. Phys. Lett.
95
,
123106
(
2009
).
15.
J.
Hicks
,
A.
Behnam
, and
A.
Ural
,
Appl. Phys. Lett.
95
,
213103
(
2009
).
16.
P.
Erdös
and
A.
Rényi
,
Publ. Math. (Debrecen)
6
,
290
(
1959
).
17.
B.
Bollobás
,
Random Graphs
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
18.
E. N.
Economou
,
Green’s Functions in Quantum Physics
(
Springer
,
Berlin
,
2006
).
19.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge, UK
,
1997
).
20.
J.
Mathon
,
A.
Umerski
, and
M.
Villeret
,
Phys. Rev. B
55
,
14378
(
1997
).
21.
D.
Grimm
,
A.
Latgé
,
R. B.
Muniz
, and
M. S.
Ferreira
,
Phys. Rev. B
71
,
113408
(
2005
).
You do not currently have access to this content.