Polycrystalline 0.94(Bi1/2Na1/2)TiO30.06BaTiO3 samples were tested under uniaxial mechanical compression at various temperatures in the vicinity of the polar tetragonal to nonpolar tetragonal phase boundary. They are shown to display double loop-like stress-strain behavior, marked by a closed ferroelastic hysteresis loop. Thus, it forms a mechanical analog to the polarization-electric field hysteresis behavior of barium titanate above the Curie temperature. As temperature is increased there is an apparent loss of macroscopically observable ferroelasticity, despite the persistence of tetragonality. Macroscopic experimental results are discussed in conjunction with temperature-dependent and stress-dependent high-energy x-ray diffraction data. This reveals a phase transition below the Curie temperature, marked by a discontinuous change in lattice parameters and octahedral tilting during compressive mechanical loading.

1.
J.
Rödel
,
W.
Jo
,
K. T. P.
Seifert
,
E. M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
2.
G. A.
Smolenskii
,
V. A.
Isupov
,
A. I.
Agranovskaya
, and
N. N.
Krainik
,
Sov. Phys. Solid State
2
,
2651
(
1961
).
3.
C.
Xu
,
D.
Lin
, and
K. W.
Kwok
,
Solid State Sci.
10
,
934
(
2008
).
4.
T.
Takenaka
,
K.
Maruyama
, and
K.
Sakata
,
Jpn. J. Appl. Phys., Part 1
30
,
2236
(
1991
).
5.
J.
Suchanicz
,
K.
Roleder
,
J.
Kwapulinski
, and
I.
JankowskaSumara
,
Phase Transitions
57
,
173
(
1996
).
6.
S. T.
Zhang
,
A. B.
Kounga
,
E.
Aulbach
, and
Y.
Deng
,
J. Am. Ceram. Soc.
91
,
3950
(
2008
).
7.
G. O.
Jones
and
P. A.
Thomas
,
Acta Crystallogr. B
58
,
168
(
2002
).
8.
H. X.
Wang
,
H. Q.
Xu
,
H. S.
Luo
,
Z. W.
Yin
,
A. A.
Bokov
, and
Z. -G.
Ye
,
Appl. Phys. Lett.
87
,
012904
(
2005
).
9.
X.
Tan
,
J.
Frederick
,
C.
Ma
,
E.
Aulbach
,
M.
Marsilius
,
W.
Hong
,
T.
Granzow
,
W.
Jo
, and
J.
Rödel
,
Phys. Rev. B
81
,
014103
(
2010
).
10.
M. I.
Morozov
and
D.
Damjanovic
,
J. Appl. Phys.
104
,
034107
(
2008
).
11.
X.
Tan
,
E.
Aulbach
,
W.
Jo
,
T.
Granzow
,
J.
Kling
,
M.
Marsilius
,
H. -J.
Kleebe
, and
J.
Rödel
,
J. Appl. Phys.
106
,
094102
(
2009
).
12.
J. E.
Daniels
and
M.
Drakopoulos
,
J. Synchrotron Radiat.
16
,
463
(
2009
).
13.
J. E.
Daniels
,
J. Appl. Crystallogr.
41
,
1109
(
2008
).
14.
T.
Roisnel
and
J.
Rodríguez-Carvajal
,
Mater. Sci. Forum
378–381
,
118
(
2001
).
15.
K. G.
Webber
,
E.
Aulbach
,
T.
Key
,
M.
Marsilius
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
57
,
4614
(
2009
).
16.
Y.
Hiruma
,
K.
Yoshii
,
H.
Nagata
, and
T.
Takenaka
,
Ferroelectrics
346
,
114
(
2007
).
17.
W.
Jo
,
J. E.
Daniels
,
J. L.
Jones
,
X.
Tan
,
P. A.
Thomas
,
D.
Damjanovic
, and
J.
Rödel
, In preparation (
2010
).
18.
V.
Dorcet
,
G.
Trolliard
, and
P.
Boullay
,
Chem. Mater.
20
,
5061
(
2008
).
19.
G.
Trolliard
and
V.
Dorcet
,
Chem. Mater.
20
,
5074
(
2008
).
20.
J. A.
Gonzalo
and
J. M.
Rivera
,
Ferroelectrics
2
,
31
(
1971
).
21.
22.
T.
Leist
,
T.
Granzow
,
W.
Jo
, and
J.
Rödel
, “
Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics
,”
J. Appl. Phys.
(in press).
23.
G. A.
Rossetti
, Jr.
,
L. E.
Cross
, and
K.
Kushida
,
Appl. Phys. Lett.
59
,
2524
(
1991
).
24.
F.
Jona
and
G.
Shirane
,
Ferroelectric Crystals
(
Pergamon
,
New York
,
1962
).
25.
E. J.
Huibregtse
,
W. H.
Bessey
, and
M. E.
Drougard
,
J. Appl. Phys.
30
,
899
(
1959
).
26.
K.
Aizu
,
J. Phys. Soc. Jpn.
27
,
1171
(
1969
).
27.
G.
Pakulski
,
B.
Mróz
, and
T.
Krajewski
,
Ferroelectrics
48
,
259
(
1983
).
28.
J. A.
Tuszyńaski
,
B.
Mróz
,
H.
Kiefte
, and
M. J.
Clouter
,
Ferroelectrics
77
,
111
(
1988
).
29.
G.
Pakulski
,
T.
Breczewski
,
B.
Mróz
, and
T.
Krajewski
,
Ferroelectrics
74
,
375
(
1987
).
30.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Clarendon
,
Oxford
,
1977
).
31.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic
,
New York
,
1971
).
32.
33.
E.
Sawaguchi
and
T.
Kittaka
,
J. Phys. Soc. Jpn.
7
,
336
(
1952
).
You do not currently have access to this content.