The main objective of this contribution is to point out the potentialities of cerium doped LuAG single crystal as pixels and fibers. We first show that after optimization of growth conditions using Bridgman technology, this composition exhibits very good performances for scintillating applications (up to 26 000 photons/MeV). When grown with the micropulling down technology, fiber shapes can be obtained while the intrinsic performances are preserved. For the future high energy experiments requiring new detector concepts capable of delivering much richer informations about x- or gamma-ray energy deposition, unusual fiber shaped dense materials need to be developed. We demonstrate in this frame that cerium doped LuAG is a serious candidate for the next generation of ionizing radiation calorimeters.

1.
P.
Lecoq
,
J. Phys.: Conf. Ser.
,
160
,
012016
(
2009
).
2.
T.
Fukuda
and
V.
Chani
,
Shaped Crystals
(
Springer
,
New York
,
2007
).
3.
B.
Hautefeuille
,
K.
Lebbou
,
C.
Dujardin
,
J.
Fourmigue
,
L.
Grosvalet
,
O.
Tillement
, and
C.
Pedrini
,
J. Cryst. Growth
289
,
172
(
2006
).
4.
K.
Lebbou
,
D.
Perrodin
,
V.
Chani
,
A.
Brenier
,
O.
Tillement
,
O.
Aloui
,
J. M.
Fourmigue
,
J.
Didierjean
,
F.
Balembois
, and
P.
Georges
,
J. Am. Ceram. Soc.
89
,
75
(
2006
).
5.
V.
Chani
,
K.
Lebbou
,
B.
Hautefeuille
,
O.
Tillement
, and
J. M.
Fourmigue
,
Cryst. Res. Technol.
41
,
972
(
2006
).
6.
H.
Ishibashi
,
K.
Shimizu
,
K.
Susa
, and
S.
Kubota
,
IEEE Trans. Nucl. Sci.
36
,
170
(
1989
).
7.
C.
Melcher
and
J.
Schweitzer
,
IEEE Trans. Nucl. Sci.
39
,
502
(
1992
).
8.
A.
Lempicki
,
M.
Randles
,
D.
Wisniewski
,
M.
Balcerzyk
,
C.
Brecher
, and
A.
Wojtowicz
,
IEEE Trans. Nucl. Sci.
42
,
280
(
1995
).
9.
J.
Mares
,
A.
Beitlerova
,
M.
Nikl
,
A.
Vedda
,
C. D.
Ambrosio
,
K.
Blazek
, and
K.
Nejezchleb
,
Phys. Status Solidi C
4
,
996
(
2007
).
10.
H.
Ogino
,
A.
Yoshikawa
,
M.
Nikl
,
J. A.
Mares
,
J. I.
Shimoyama
, and
K.
Kishio
,
J. Cryst. Growth
311
,
908
(
2009
).
11.
K. S.
Bagdasarov
, in
Sovremennaya Kristallografiya
, edited by
B. K.
Vainstein
(
Nauka
,
Moscow
,
1980
), Vol.
3
.
12.
A. G.
Petrosyan
,
J. Cryst. Growth
139
,
372
(
1994
).
13.
A. G.
Petersyan
,
G. O.
Shirinyan
,
K. L.
Ovanesyan
, and
A. A.
Avetisyan
,
Krist. Tech.
13
,
43
(
1978
).
14.
H.
Ogino
,
A.
Yoshikawa
,
M.
Nikl
,
K.
Kamada
, and
T.
Fukuda
,
J. Cryst. Growth
292
,
239
(
2006
).
15.
R. D.
Shannon
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A
32
,
751
(
1976
).
16.
W. G.
Pfann
,
Zone Melting
(
Chapman and Hall
,
London
,
1966
).
17.
18.
D.
Maier
,
D.
Rhede
,
R.
Bertram
,
D.
Klimm
, and
R.
Fornari
,
Opt. Mater. (Amsterdam, Neth.)
30
,
11
(
2007
).
19.
C.
Dujardin
,
C.
Pedrini
,
W.
Blanc
,
J.
Gacon
,
J.
van’t Spijker
,
O.
Frijns
,
C.
van Eijk
,
P.
Dorenbos
,
R.
Chen
,
A.
Fremout
,
F.
Tallouf
,
S.
Tavernier
,
P.
Bruyndonckx
, and
A.
Petrosyan
,
J. Phys.: Condens. Matter
10
,
3061
(
1998
).
20.
V.
Babin
,
I.
Blazek
,
A.
Krasnikov
,
K.
Nejezchleb
,
M.
Nikl
,
T.
Savikhina
, and
S.
Zazubovich
,
Phys. Status Solidi C
2
,
97
(
2005
).
21.
M.
Nikl
,
E.
Mihokova
,
J. A.
Mares
,
A.
Vedda
,
M.
Martini
,
K.
Nejezchleb
, and
K.
Blazek
,
Phys. Status Solidi A
181
,
R10
(
2000
).
22.
M.
Nikl
,
J. A.
Mares
,
N.
Solovieva
,
J.
Hybler
,
A.
Voloshinovskii
,
K.
Nejezchleb
, and
K.
Blazek
,
Phys. Status Solidi A
201
,
R41
(
2004
).
23.
M.
Nikl
,
A.
Vedda
,
M.
Fasoli
,
I.
Fontana
,
V. V.
Laguta
,
E.
Mihokova
,
J.
Pejchal
,
J.
Rosa
, and
K.
Nejezchleb
,
Phys. Rev. B
76
,
195121
(
2007
).
24.
A.
Lempicki
and
J.
Glodo
,
Nucl. Instrum. Methods Phys. Res. A
416
,
333
(
1998
).
25.
J.
Mares
,
M.
Nikl
,
A.
Beitlerova
,
N.
Solovieva
,
C.
D’Ambrosio
,
K.
Blazek
,
P.
Maly
,
K.
Nejezchleb
,
P.
Fabeni
, and
G.
Pazzid
,
Nucl. Instrum. Methods Phys. Res. A
537
,
271
(
2005
).
26.
P.
Anfre
,
C.
Dujardin
,
J.
Fourmigue
,
B.
Hautefeuille
,
K.
Lebbou
,
C.
Pedrini
,
D.
Perrodin
, and
O.
Tillement
,
IEEE Trans. Nucl. Sci.
54
,
391
(
2007
).
You do not currently have access to this content.