An electron spin resonance study has been carried out on heteroepitaxial Si/insulator structures obtained through growth of epi-Lu2O3 films on (111)Si (4.5% mismatch) by molecular-beam epitaxy, with special attention to the inherent quality as well as the thermal stability of interfaces, monitored through occurring paramagnetic point defects. This indicates the presence, in the as-grown state, of Pb defects (5×1011cm2) with the unpaired sp3 Si dangling bond along the [111] interface normal, the archetypical defect (trap) of the standard thermal (111)Si/SiO2 interface, directly revealing, and identified as the result of, imperfect epitaxy. The occurrence of Pb defects, a major system of electrically detrimental interface traps, is ascribed to lattice mismatch with related introduction of misfit dislocations. This interface nature appears to persist for annealing in vacuum up to a temperature Tan420°C. Yet, in the range Tan420550°C, the interface starts to “degrade” to standard Si/SiO2 properties, as indicated by the gradually increasing Pb density and attendant appearance of the EX center, an SiO2-associated defect. At Tan700°C, [Pb] has increased to about 1.3 times the value for standard thermal (111)Si/SiO2, to remain constant up to Tan1000°C, indicative of an unaltered interface structure. Annealing at Tan>1000°C results in disintegration altogether of the Si/SiO2-type interface. Passivation anneal in H2(405°C) alarmingly fails to deactivate the Pb system to the device grade (sub) 1010cm2eV1 level, which would disfavor c-Lu2O3 as a suitable future high-κ replacement for the a-SiO2 gate dielectric. Comparison of the thermal stability of the c-Lu2O3/(111)Si interface with that of molecular-beam deposited amorphous-Lu2O3/(100)Si shows the former to be superior, yet unlikely to meet technological thermal budget requirements. No Lu2O3-specific point defects could be observed.

1.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
2.
J.
Robertson
,
Eur. Phys. J.: Appl. Phys.
28
,
265
(
2004
).
3.
See, e.g.,
M. A.
Quevedo-Lopez
,
M.
El-Bouanani
,
B. E.
Gnade
,
R. M.
Wallace
,
M. R.
Visokay
,
M.
Douglas
,
M. J.
Bevan
, and
L.
Colombo
,
J. Appl. Phys.
92
,
3540
(
2002
).
4.
High-κ Gate Dielectrics, edited by
M.
Houssa
(
IOP
,
Bristol
,
2004
).
5.
J. N.A.
Matthews
,
Phys. Today
61
,
25
(
2008
).
6.
P.
Darmawan
,
C. L.
Yuan
, and
P. S.
Lee
,
Solid State Commun.
138
,
571
(
2006
).
7.
S.
Guha
,
E.
Cartier
,
M. A.
Gribelyuk
,
N. A.
Bojarczuk
, and
M. C.
Copel
,
Appl. Phys. Lett.
77
,
2710
(
2000
).
8.
J. A.
Gupta
,
D.
Landheer
,
J. P.
McGaffrey
, and
G. I.
Sproule
,
Appl. Phys. Lett.
78
,
1718
(
2001
).
9.
W.
Vandervorst
,
B.
Brijs
,
H.
Bender
,
O. T.
Conrad
,
J.
Petry
,
O.
Richard
,
S.
Van Elshocht
,
A.
Delabie
,
M.
Caymax
, and
S.
DeGendt
,
Mater. Res. Soc. Symp. Proc.
745
,
23
(
2003
).
10.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Phys.: Condens. Matter
13
,
L673
(
2001
);
A.
Stesmans
and
V. V.
Afanas’ev
,
Appl. Phys. Lett.
80
,
1957
(
2002
).
11.
A. Y.
Kang
,
P. M.
Lenahan
,
J. F.
Conley
, Jr.
, and
R.
Solanski
,
Appl. Phys. Lett.
81
,
1128
(
2002
).
12.
J. L.
Cantin
and
H. J.
von Bardeleben
,
J. Non-Cryst. Solids
303
,
175
(
2002
).
13.
S.
Baldovino
,
S.
Nokrin
,
G.
Scarel
,
M.
Fanciulli
,
T.
Graf
, and
M. S.
Brandt
,
J. Non-Cryst. Solids
322
,
168
(
2003
).
14.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
97
,
033510
(
2005
).
15.
B. J.
Jones
and
R. C.
Barklie
,
Microelectron. Eng.
80
,
74
(
2005
).
16.
H.
Nohira
,
T.
Shiraishi
,
T.
Nakamura
,
K.
Takahashi
,
M.
Takeda
,
S.
Ohmi
,
H.
Iwai
, and
T.
Hattori
,
Appl. Surf. Sci.
216
,
234
(
2003
);
B. W.
Bush
,
W. H.
Schulte
,
E.
Garfunkel
, and
T.
Gustafsson
,
Phys. Rev. B
62
, R
13290
(
2000
).
17.
K.
Clémer
,
A.
Stesmans
,
V. V.
Afanas’ev
,
L. F.
Edge
, and
D. G.
Schlom
,
J. Appl. Phys.
102
,
034516
(
2007
).
18.
G.
Scarel
,
E.
Bonera
,
C.
Wiemer
,
G.
Tallarida
,
S.
Spiga
,
M.
Fanciulli
,
I. L.
Fedushkin
,
H.
Schumann
,
Y.
Lebedinskii
, and
A.
Zenkevich
,
Appl. Phys. Lett.
85
,
630
(
2004
).
19.
S.
Ohmi
,
M.
Takeda
,
H.
Ishirawa
, and
H.
Iwai
,
J. Electrochem. Soc.
151
,
G279
(
2004
).
20.
P.
Delugas
and
V.
Fiorentini
,
Microelectron. Reliab.
45
,
831
(
2005
).
21.
S.
Seguini
,
E.
Bonera
,
S.
Spiga
,
G.
Scarel
, and
M.
Fanciulli
,
Appl. Phys. Lett.
85
,
5316
(
2004
);
V. V.
Afanas'ev
,
S.
Shamuilia
,
A.
Badylevich
,
A.
Stesmans
,
L. F.
Edge
,
W.
Tian
,
D. G.
Schlom
,
J. M.J.
Lopes
,
R.
Roeckerath
, and
J.
Schubert
,
Microelectron. Eng.
84
,
2278
(
2007
).
22.
G.
Lucovsky
,
Y.
Zhang
,
G. B.
Rayner
,
G.
Appel
,
H.
Ade
, and
J. L.
Whitten
,
J. Vac. Sci. Technol. B
20
,
1739
(
2002
).
23.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
24.
L.
Marsella
and
V.
Fiorentini
,
Phys. Rev. B
69
,
172103
(
2004
).
25.
A.
Zenkevich
,
Y.
Lebebinskii
,
S.
Spiga
,
C.
Wiemer
,
G.
Scarel
, and
M.
Fanciulli
,
Microelectron. Eng.
84
,
2263
(
2007
).
26.
M.
Ihara
,
Y.
Arimoto
,
M.
Jifuku
,
T.
Mimura
,
S.
Kodama
,
H.
Yamawaki
, and
T.
Yamaoka
,
J. Electrochem. Soc.
129
,
2569
(
1982
).
27.
Y.
Kado
and
Y.
Arita
,
Extented Abstracts of the 20th International Conference on Solid State Devices and Materials
, Tokyo,
1988
, p.
181
;
Extented Abstracts of the 21th International Conference on Solid State Devices and Materials
, Tokyo,
1989
, p.
45
.
28.
H.
Fukumoto
,
T.
Imura
, and
Y.
Osaka
,
Appl. Phys. Lett.
55
,
360
(
1989
).
29.
T.
Inoue
,
Y.
Yamamoto
,
S.
Koyama
,
S.
Suzuki
, and
Y.
Ueda
,
Appl. Phys. Lett.
56
,
1332
(
1990
);
M.
Yoshimoto
,
K.
Shimozono
,
T.
Maeda
,
T.
Ohnishi
,
M.
Kumagai1
,
T.
Chikyow
,
O.
Ishiyama
,
M.
Shinohara
, and
H.
Koinuma
,
Jpn. J. Appl. Phys., Part 2
34
,
L688
(
1995
).
30.
E. J.
Tarsa
,
J. S.
Speck
, and
McD.
Robinson
,
Appl. Phys. Lett.
63
,
539
(
1993
).
31.
J.
Kwo
,
M.
Hong
,
A. R.
Kortan
,
K. T.
Queeney
,
Y. J.
Chabal
,
J. P.
Mannaerts
,
T.
Boone
,
J. J.
Krajewski
,
A. M.
Sergent
, and
J. M.
Rosamilia
,
Appl. Phys. Lett.
77
,
130
(
2000
).
32.
D. O.
Klenov
,
L. F.
Edge
,
D. G.
Schlom
, and
S.
Stemmer
,
Appl. Phys. Lett.
86
,
051901
(
2005
).
33.
J. P.
Liu
,
P.
Zaumseil
,
E.
Bugiel
, and
H. J.
Osten
,
Appl. Phys. Lett.
79
,
671
(
2001
).
34.
A.
Dimoulas
,
A.
Travlos
,
G.
Vellianitis
,
N.
Boukos
, and
K.
Agryropoulos
,
J. Appl. Phys.
90
,
4224
(
2001
).
35.
H. J.
Osten
,
J. P.
Liu
,
E.
Bugiel
,
H. J.
Müssig
, and
P.
Zaumseil
,
J. Cryst. Growth
235
,
229
(
2002
).
36.
Y.
Nishikawa
,
T.
Yamaguchi
,
M.
Yoshiki
,
H.
Satake
, and
N.
Fukushima
,
Appl. Phys. Lett.
81
,
4386
(
2002
).
37.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
38.
H. D. B.
Gottlob
,
M. C.
Lemme
,
T.
Mollenhauer
,
T.
Wahlbrink
,
J. K.
Efavi
,
H.
Kurz
,
Y.
Stefanov
,
K.
Haberle
,
R.
Komaragiri
,
T.
Ruland
,
F.
Zaunert
, and
U.
Schwalke
,
J. Non-Cryst. Solids
351
,
1885
(
2005
).
39.
A.
Laha
,
H. J.
Osten
, and
A.
Fissel
,
Appl. Phys. Lett.
90
,
113508
(
2007
).
40.
H. J.
Osten
,
M.
Czernohorsky
,
R.
Dargis
,
A.
Laha
,
D.
Kühne
,
E.
Bugiel
, and
A.
Fissel
,
Microelectron. Eng.
84
,
2222
(
2007
).
41.
P. J.
Caplan
,
E. H.
Poindexter
,
B. E.
Deal
, and
R. R.
Razouk
,
J. Appl. Phys.
50
,
5847
(
1979
);
E. H.
Poindexter
,
P. J.
Caplan
,
B. E.
Deal
, and
R. R.
Razouk
,
J. Appl. Phys.
52
,
879
(
1981
).
42.
K. L.
Brower
,
Semicond. Sci. Technol.
4
,
970
(
1989
).
43.
C. R.
Helms
and
E. H.
Poindexter
,
Rep. Prog. Phys.
57
,
791
(
1994
).
44.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
83
,
2449
(
1998
).
45.
A.
Stesmans
,
Phys. Rev. B
48
,
2418
(
1993
).
46.
A.
Stesmans
and
V. V.
Afanas’ev
,
Phys. Rev. B
57
,
10030
(
1998
).
47.
E. H.
Poindexter
,
G. J.
Gerardi
,
H. -E.
Rueckel
,
P. J.
Caplan
,
N. M.
Johnson
, and
D. K.
Biegelsen
,
J. Appl. Phys.
56
,
2844
(
1984
).
48.
A.
Stesmans
,
B.
Nouwen
, and
V. V.
Afanas’ev
,
Phys. Rev. B
58
,
15801
(
1998
).
49.
A.
Stirling
,
A.
Pasquarello
,
J. -C.
Charlier
, and
R.
Car
,
Phys. Rev. Lett.
85
,
2773
(
2000
).
50.
W.
Futako
,
T.
Umeda
,
M.
Nishizawa
,
T.
Yasuda
,
J.
Isoya
, and
S.
Yamasaki
,
J. Non-Cryst. Solids
299–302
,
575
(
2002
);
W.
Futako
,
N.
Mizuochi
, and
S.
Yamasaki
,
Phys. Rev. Lett.
92
,
105505
(
2004
).
[PubMed]
51.
A.
Stesmans
,
Phys. Rev. B
45
,
9501
(
1992
).
52.
W. E.
Carlos
and
S. M.
Prokes
,
J. Appl. Phys.
78
,
2129
(
1995
).
53.
M.
Dohi
,
H.
Yamatani
, and
T.
Fujita
,
J. Appl. Phys.
91
,
815
(
2002
).
54.
A.
Baumer
,
M.
Stutzmann
,
M. S.
Brandt
,
F. C. K.
Au
, and
S. T.
Lee
,
Appl. Phys. Lett.
85
,
943
(
2004
).
55.
A.
Stesmans
and
F.
Scheerlink
,
Phys. Rev. B
50
,
5204
(
1994
).
56.
R. T.
Tung
,
J. C.
Bean
,
J. M.
Gibson
,
J. M.
Poate
, and
D. C.
Jacobson
,
Appl. Phys. Lett.
40
,
684
(
1982
).
57.
W.
Tian
,
L. F.
Edge
,
D. G.
Schlomm
,
D. O.
Klenov
,
S.
Stemmer
,
S.
Shamuilia
,
M.
Badylevich
,
V. V.
Afanas’ev
, and
A.
Stesmans
, (unpublished).
58.
T.
Vondrak
and
X. Y.
Zhu
,
J. Phys. Chem. B
103
,
4892
(
1999
);
A.
Pusel
,
U.
Wetterauer
, and
P.
Hess
,
Phys. Rev. Lett.
81
,
645
(
1998
).
59.
D. L.
Griscom
,
J. Appl. Phys.
58
,
2524
(
1985
).
60.
P.
Somers
,
A.
Stesmans
,
V. V.
Afanas’ev
,
C.
Claeys
, and
E.
Simoen
,
J. Appl. Phys.
103
,
033703
(
2008
).
61.
A.
Stesmans
,
Phys. Rev. B
61
,
8393
(
2000
).
62.
K. L.
Brower
,
Phys. Rev. B
33
,
4471
(
1986
).
63.
J. T.
Yount
,
P. M.
Lenahan
, and
P. W.
Wyatt
,
J. Appl. Phys.
77
,
699
(
1995
).
64.
A.
Stesmans
and
V. V.
Afanasev
,
Appl. Phys. Lett.
77
,
1469
(
2000
).
65.
P.
Hirsch
,
Proceedings of the second International Conference on Polycrystalline Semiconductors
(
Schwäbisch Hall
,
Germany
,
1990
), p.
470
;
Y. B.
Bolkhovityanov
,
O. P.
Pchelyakov
,
L. V.
Sokolov
, and
S. I.
Chikichev
,
Semiconductors
37
,
493
(
2003
).
66.
See, e.g.,
W.
Schröter
and
H.
Serva
,
Solid State Phenom.
85–86
,
67
(
2002
).
67.
E.
Weber
and
H.
Alexander
,
J. Phys. (Paris)
40
,
C6
(
1979
) and references therein.
68.
G. W.
Canters
and
C. S.
Johnson
,
J. Magn. Reson.
6
,
1
(
1972
);
K. L.
Brower
and
T. J.
Headley
,
Phys. Rev. B
34
,
3610
(
1986
).
69.
A.
Stesmans
,
Appl. Phys. Lett.
48
,
972
(
1986
).
70.
B.
Henderson
,
Defects in Crystalline Solids
(
Arnold
,
London
,
1972
), p.
20
.
71.
A.
Stesmans
,
J. Appl. Phys.
88
,
489
(
2000
);
A.
Stesmans
,
J. Appl. Phys.
92
,
1317
(
2002
).
You do not currently have access to this content.