The recent achievement of the high thermoelectric figure of merit in nanograined materials is attributed to the successful optimization of the consolidation process. Despite a thermal conductivity reduction, it has been experimentally observed that the porous nanograined materials have lower thermoelectric figure of merit than their bulk counterpart due to significant reduction in the electrical conductivity. In this paper, nanoscale porosity effects on electron and phonon transport are modeled to predict and explain thermoelectric properties in porous nanograined materials. Electron scattering at the pores is treated quantum mechanically while phonon transport is treated using a classical picture. The modeling results show that the charge carriers are scattered more severely in nanograined materials than the macroscale porous materials, due to a higher number density of scattering sites. Porous nanograined materials have enhanced Seebeck coefficient due to energy filtering effect and low thermal conductivity, which are favorable for thermoelectric applications. However, the benefit is not large enough to overcome the deficit in the electrical conductivity, so that a high sample density is necessary for nanograined SiGe.

1.
G. S.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
Berlin
,
2001
).
2.
D. M.
Rowe
,
CRC Handbook of Thermoelectrics
(
CRC
,
Boca Raton, FL
,
1995
).
3.
G.
Chen
,
M. S.
Dresselhaus
,
G.
Dresselhaus
,
J. P.
Fleurial
, and
T.
Caillat
,
Int. Mater. Rev.
48
,
45
(
2003
).
4.
M. J.
Mayo
,
Int. Mater. Rev.
41
,
85
(
1996
).
5.
S.
Seal
,
S. C.
Kuiry
,
P.
Georgieva
, and
A.
Agarwal
,
MRS Bull.
29
,
16
(
2004
).
6.
G.
Chen
,
Recent Trends in Thermoelectric Materials Research III
, (
Academic Press
,
San Diego
,
2001
), Vol.
71
, pp.
203
259
.
7.
J. P.
Heremans
,
C. M.
Thrush
, and
D. T.
Morelli
,
J. Appl. Phys.
98
,
063703
(
2005
).
8.
K. F.
Hsu
,
S.
Loo
,
F.
Guo
,
W.
Chen
,
J. S.
Dyck
,
C.
Uher
,
T.
Hogan
,
E. K.
Polychroniadis
, and
M. G.
Kanatzidis
,
Science
303
,
818
(
2004
).
9.
W.
Kim
,
J.
Zide
,
A.
Gossard
,
D.
Klenov
,
S.
Stemmer
,
A.
Shakouri
, and
A.
Majumdar
,
Phys. Rev. Lett.
96
,
045901
(
2006
).
10.
X. B.
Zhao
,
X. H.
Ji
,
Y. H.
Zhang
,
T. J.
Zhu
,
J. P.
Tu
, and
X. B.
Zhang
,
Appl. Phys. Lett.
86
,
062111
(
2005
).
11.
H.
Lee
,
D. Z.
Wang
,
M. Y.
Tang
,
Z. F.
Ren
,
P.
Gogna
,
J. -P.
Fleurial
,
M. S.
Dresselhaus
, and
G.
Chen
, in
International Conference on Thermoelectrics
(
Clemson
,
SC
,
2005
).
12.
N. S.
Lidorenko
,
O. M.
Narva
,
L. D.
Dudkin
, and
R. S.
Erofeev
,
Inorg. Mater.
6
,
1853
(
1970
).
13.
D. J.
Bergman
and
O.
Levy
,
J. Appl. Phys.
70
,
6821
(
1991
).
14.
R.
Landauer
,
Electrical Transport and Optical Properties of Inhomogeneous Media
, (
American Institute of Physics
,
New York
,
1978
), pp.
2
45
.
15.
D. W.
Song
,
W. N.
Shen
,
B.
Dunn
,
C. D.
Moore
,
M. S.
Goorsky
,
T.
Radetic
,
R.
Gronsky
, and
G.
Chen
,
Appl. Phys. Lett.
84
,
1883
(
2004
).
16.
D.
Song
and
G.
Chen
,
Appl. Phys. Lett.
84
,
687
(
2004
).
17.
R. G.
Yang
,
G.
Chen
, and
M. S.
Dresselhaus
,
Nano Lett.
5
,
1111
(
2005
).
18.
A.
Shakouri
and
J. E.
Bowers
,
Appl. Phys. Lett.
71
,
1234
(
1997
).
19.
G. D.
Mahan
,
Recent Trends in Thermoelectric Materials Research III
, (
Academic Press
,
San Diego
,
2001
), Vol.
71
, pp.
157
174
.
20.
G. D.
Mahan
,
J. Appl. Phys.
76
,
4362
(
1994
).
21.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
,
073105
(
2007
).
22.
X.
Wang
,
H.
Lee
,
Y. C.
Lan
,
G. H.
Zhu
,
G.
Joshi
,
D. Z.
Wnag
,
J.
Yang
,
A. J.
Muto
,
M. Y.
Tang
,
J.
Klatsky
,
S.
Song
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Appl. Phys. Lett.
93
,
193121
(
2008
).
23.
G.
Joshi
,
H.
Lee
,
Y. C.
Lan
,
X.
Wang
,
G. H.
Zhu
,
D. Z.
Wang
,
R. W.
Giould
,
D. C.
Cuff
,
M. Y.
Tang
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Nano Lett.
8
,
4670
(
2008
).
24.
C. B.
Vining
,
J. Appl. Phys.
69
,
331
(
1991
).
25.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
Cambridge, United Kingdom
,
2000
).
26.
J.
Singh
,
Physics of Semiconductors and Their Heterostructures
(
McGraw Hill
,
New York
,
1996
).
27.
Y. I.
Ravich
,
B. A.
Efimova
, and
V. I.
Tamarchenko
,
Phys. Status Solidi B
43
,
11
(
1971
).
28.
V.
Palankovsky
, Thesis,
Technische Universitat Wien
,
2000
.
29.
F.
Gamiz
,
J. B.
Roldan
,
J. A.
Lopez-Villanueva
,
P.
Cartujo-Cassinello
, and
F.
Jimenez-Molinos
,
Solid-State Electron.
46
,
1715
(
2002
).
30.
M.
Fischetti
,
IEEE Trans. Electron Devices
38
,
634
(
1991
).
31.
J. P.
Dismukes
,
L.
Ekstrom
,
E. F.
Steigmeieer
,
I.
Kudman
, and
D. S.
Beers
,
J. Appl. Phys.
35
,
2899
(
1964
).
32.
J.
Callaway
and
H. C.
von Baeyer
,
Phys. Rev.
120
,
1149
(
1960
).
33.
E. F.
Steigmeier
and
B.
Abeles
,
Phys. Rev.
136
,
A1149
(
1964
).
You do not currently have access to this content.