In tetrahedral amorphous carbon (ta-C) swift heavy ions create conducting tracks of about 8 nm in diameter. To apply these nanowires and implement them into nanodevices, they have to be contacted and gated. In the present work, we demonstrate the fabrication of conducting vertical nanostructures in ta-C together with self-aligned gate electrodes. A multilayer assembly is irradiated with GeV heavy ions and subsequently exposed to several selective etching processes. The samples consist of a Si wafer as substrate covered by a thin ta-C layer. On top is deposited a SiNx film for insulation, a Cr layer as electrode, and finally a polycarbonate film as ion track template. Chemical track etching opens nanochannels in the polymer which are self-aligned with the conducting tracks in ta-C because they are produced by the same ions. Through the pores in the polymer template, the Cr and SiNx layers are opened by ion beam sputtering and plasma etching, respectively. The resulting structure consists of nanowires embedded in the insulating carbon matrix with a built in gate electrode and has potential application as gated field emission cathode.

1.
E.
Ferain
and
R.
Legras
,
Nucl. Instrum. Methods Phys. Res. B
174
,
116
(
2001
).
2.
A.
Adla
,
H.
Fuess
, and
C.
Trautmann
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2892
(
2003
).
3.
M.
Toulemonde
,
C.
Trautmann
,
E.
Balanzat
,
K.
Hjort
, and
A.
Weidinger
,
Nucl. Instrum. Methods Phys. Res. B
216
,
1
(
2004
).
4.
M.
Toulemonde
,
W.
Assmann
,
C.
Dufour
,
A.
Meftah
,
F.
Studer
, and
C.
Trautmann
,
The Royal Danish Academy of Science and Letters
376
,
384
(
2006
).
5.
A.
Dallanora
,
T. L.
Marcondes
,
G. G.
Bermudez
,
P. F. P.
Fichtner
,
C.
Trautmann
,
M.
Toulemonde
, and
R. M.
Papaleo
,
J. Appl. Phys.
104
,
024307
(
2008
).
6.
J.
Krauser
,
J. -H.
Zollondz
,
A.
Weidinger
, and
C.
Trautmann
,
J. Appl. Phys.
94
,
1959
(
2003
).
7.
J.
Ziegler
, http://www.srim.org/,
2008
.
8.
M. E. T.
Molares
,
E. M.
Hohberger
,
Ch.
Schaeflein
,
R. H.
Blick
,
R.
Neumann
, and
C.
Trautmann
,
Appl. Phys. Lett.
82
,
2139
(
2003
).
9.
L.
Gravier
,
J. -E.
Wegrowe
,
T.
Wade
,
A.
Fabian
, and
J. -P.
Ansermet
,
IEEE Trans. Magn.
38
,
2700
(
2002
).
10.
A. F.
Bernhardt
,
R. J.
Contolini
,
A. F.
Jankowski
,
V.
Liberman
,
J. D.
Morse
,
R. G.
Musket
,
R.
Barton
,
J.
Macaulay
, and
C.
Spindt
,
J. Vac. Sci. Technol. B
18
,
1212
(
2000
).
11.
M.
Waiblinger
,
Ch.
Sommerhalter
,
B.
Pietzak
,
J.
Krauser
,
B.
Mertesacker
,
M. Ch.
Lux-Steiner
,
S.
Klaumnzer
,
A.
Weidinger
,
C.
Ronning
, and
H.
Hofsäss
,
Appl. Phys. A: Mater. Sci. Process.
69
,
239
(
1999
).
12.
C. A.
Spindt
,
J. Appl. Phys.
39
,
3504
(
1968
).
13.
H.
Hofsäss
,
H.
Binder
,
T.
Klumpp
, and
E.
Recknagel
,
Diamond Relat. Mater.
3
,
137
(
1994
).
14.
A. -K.
Nix
,
H. -G.
Gehrke
,
J.
Krauser
,
C.
Trautmann
,
A.
Weidinger
, and
H.
Hofsäss
,
Nucl. Instrum. Methods Phys. Res. B
267
,
1032
(
2009
).
15.
Y.
Manabe
and
T.
Mitsuyu
,
J. Appl. Phys.
66
,
2475
(
1989
).
You do not currently have access to this content.