Hydrodynamic instabilities in one-dimensional electron flow in semiconductor and their dependency with the electron and lattice temperatures are studied here. The driving force for the electrons is imposed by a voltage difference, and the hydrodynamic and electrostatic equations are linearized with respect to the steady-flow solution. A two-temperature hydrodynamic model predicts a stable electron flow through the semiconductor. A one-temperature hydrodynamic model is obtained by neglecting the electron energy losses due to heat conduction and scattering. This model shows that the electron flow can become unstable and establishes a criterion for that. Applied voltage and temperature can play the role of tunable parameters in the stability of the electron flow.

1.
M.
Dyakonov
and
M. S.
Shur
,
Phys. Rev. Lett.
71
,
2465
(
1993
).
2.
M.
Dyakonov
and
M. S.
Shur
,
Phys. Rev. B
51
,
14341
(
1995
).
3.
A. P.
Dmitriev
,
A. S.
Furman
,
V. Yu.
Kachorovskii
,
G. G.
Samsonidze
, and
Ge. G.
Samsonidze
,
Phys. Rev. B
55
,
10319
(
1997
).
4.
F. J.
Crowne
,
J. Appl. Phys.
82
,
1242
(
1997
).
5.
F. J.
Crowne
,
J. Appl. Phys.
87
,
8056
(
2000
).
6.
F. J.
Crowne
,
J. Appl. Phys.
91
,
5377
(
2002
).
7.
M.
Dyakonov
and
M. S.
Shur
,
Appl. Phys. Lett.
87
,
111501
(
2005
).
8.
M. I.
Dyakonov
,
Semiconductors
42
,
984
(
2008
).
9.
S.
Rudin
,
G.
Samsonidze
, and
F.
Crowne
,
J. Appl. Phys.
86
,
2083
(
1999
).
10.
V.
Ryzhii
,
A.
Satou
, and
M. S.
Shur
,
Phys. Status Solidi A
202
,
R113
(
2005
).
11.
V. V.
Popov
,
O. V.
Polischuk
, and
M. S.
Shur
,
J. Appl. Phys.
98
,
033510
(
2005
).
12.
A.
Dmitriev
and
M. S.
Shur
,
Appl. Phys. Lett.
87
,
243514
(
2005
).
13.
A. V.
Gorbatyuk
and
F. J.
Niedernostheide
,
Phys. Rev. B
65
,
245318
(
2002
).
14.
A. A.
Bulgakov
and
O. V.
Shramkova
,
Semiconductors
39
,
1007
(
2005
).
15.
W.
Calderón-Muñoz
,
M.
Sen
, and
D.
Jena
,
J. Appl. Phys.
102
,
023703
(
2007
).
16.
W.
Calderón-Muñoz
,
D.
Jena
, and
M.
Sen
,
J. Appl. Phys.
106
,
014506
(
2009
).
17.
C. -L.
Tien
,
A.
Majumdar
, and
F. M.
Gerner
,
Microscale Energy Transport
(
Taylor & Francis
,
Washington, DC
,
1998
).
18.
K.
Fushinobu
,
A.
Majumdar
, and
K.
Hijikata
,
ASME J. Heat Transfer
117
,
25
(
1995
).
19.
A.
Majumdar
,
K.
Fushinobu
, and
K.
Hijikata
,
J. Appl. Phys.
77
,
6686
(
1995
).
20.
K.
Blotekjaer
,
IEEE Trans. Electron Devices
17
,
38
(
1970
).
21.
J.
Lai
and
A.
Majumdar
,
J. Appl. Phys.
79
,
7353
(
1996
).
22.
G.
Baccarani
and
M. R.
Wordeman
,
Solid-State Electron.
28
,
407
(
1985
).
23.
O.
Vatel
and
M.
Tanimoto
,
J. Appl. Phys.
77
,
2358
(
1995
).
24.
D. S. H.
Charrier
,
M.
Kemerink
,
B. E.
Smalbrugge
,
T.
de Vries
, and
R. A. J.
Janssen
,
ACS Nano
2
,
622
(
2008
).
25.
F. J.
Solorio
and
M.
Sen
,
J. Fluid Mech.
183
,
365
(
1987
).
26.
A.
Quarteroni
,
R.
Sacco
, and
F.
Saleri
,
Numerical Mathematics
(
Springer
,
New York
,
2000
).
27.
W. J.
Minkowycz
,
E. M.
Sparrow
,
G. E.
Schneider
, and
R. H.
Pletcher
,
Handbook of Numerical Heat Transfer
(
Wiley
,
New York
,
1988
).
28.
A.
Dargys
and
J.
Kundrotas
,
Handbook on Physical Properties of Ge, Si, GaAs, and InP
(
Vilnius, Science and Encyclopedia
,
Lithuania
,
1994
).
29.
M. S.
Shur
,
Electron. Lett.
18
,
909
(
1982
).
You do not currently have access to this content.