The analysis of transparent conducting oxide nanostructures suffers from a lack of high throughput yet quantitatively sensitive set of analytical techniques that can properly assess their electrical properties and serve both as characterization and diagnosis tools. This is addressed by applying a comprehensive set of characterization techniques to study the electrical properties of solution-grown Al-doped ZnO nanowires as a function of composition from 0 to 4 at. % Al:Zn. Carrier mobility and charge density extracted from sensitive optical absorption measurements are in agreement with those extracted from single-wire field-effect transistor devices. The mobility in undoped nanowires is 28cm2/Vs and decreases to 14cm2/Vs at the highest doping density, though the carrier density remains approximately constant (1020cm3) due to limited dopant activation or the creation of charge-compensating defects. Additionally, the local geometry of the Al dopant is studied by nuclear magnetic resonance, showing the occupation of a variety of dopant sites.

1.
D. S.
Ginley
and
C.
Bright
,
MRS Bull.
25
,
15
(
2000
).
2.
S. Y.
Ju
,
A.
Facchetti
,
Y.
Xuan
,
J.
Liu
,
F.
Ishikawa
,
P. D.
Ye
,
C. W.
Zhou
,
T. J.
Marks
, and
D. B.
Janes
,
Nat. Nanotechnol.
2
,
378
(
2007
).
3.
B. N.
Pal
,
P.
Trottman
,
J.
Sun
, and
H. E.
Katz
,
Adv. Funct. Mater.
18
,
1832
(
2008
).
4.
M.
Law
,
L. E.
Greene
,
J. C.
Johnson
,
R.
Saykally
, and
P. D.
Yang
,
Nature Mater.
4
,
455
(
2005
).
5.
B. G.
Lewis
and
D. C.
Paine
,
MRS Bull.
25
,
22
(
2000
).
7.
Z. L.
Wang
,
J. Phys.: Condens. Matter
16
,
R829
(
2004
).
8.
L.
Goris
,
R.
Noriega
,
M.
Donovan
,
J.
Jokisaari
,
G.
Kusinski
, and
A.
Salleo
,
J. Electron. Mater.
38
,
586
(
2009
).
9.
R.
Noriega
,
L.
Goris
,
J.
Rivnay
,
J.
Scholl
,
L. M.
Thompson
,
A. C.
Palke
,
J. F.
Stebbins
, and
A.
Salleo
,
Proc. SPIE
7411
,
7411
24
(
2009
).
10.
M. W.
Rowell
,
M. A.
Topinka
,
M. D.
McGehee
,
H. J.
Prall
,
G.
Dennler
,
N. S.
Sariciftci
,
L. B.
Hu
, and
G.
Gruner
,
Appl. Phys. Lett.
88
,
233506
(
2006
).
11.
J. Y.
Lee
,
S. T.
Connor
,
Y.
Cui
, and
P.
Peumans
,
Nano Lett.
8
,
689
(
2008
).
12.
S. N.
Cha
,
J. E.
Jang
,
Y.
Choi
,
G. A. J.
Amaratunga
,
G. W.
Ho
,
M. E.
Welland
,
D. G.
Hasko
,
D. J.
Kang
, and
J. M.
Kim
,
Appl. Phys. Lett.
89
,
263102
(
2006
).
13.
P. C.
Chang
,
C. J.
Chien
,
D.
Stichtenoth
,
C.
Ronning
, and
J. G.
Lu
,
Appl. Phys. Lett.
90
,
113101
(
2007
).
14.
P. C.
Chang
,
Z.
Fan
,
C. J.
Chien
,
D.
Stichtenoth
,
C.
Ronning
, and
J. G.
Lu
,
Appl. Phys. Lett.
89
,
133113
(
2006
).
15.
Y.
Cui
,
X. F.
Duan
,
J. T.
Hu
, and
C. M.
Lieber
,
J. Phys. Chem. B
104
,
4766
(
2000
).
16.
Z. Y.
Fan
,
D. W.
Wang
,
P. C.
Chang
,
W. Y.
Tseng
, and
J. G.
Lu
,
Appl. Phys. Lett.
85
,
5923
(
2004
).
17.
S.
Ju
,
K.
Lee
,
M. H.
Yoon
,
A.
Facchetti
,
T. J.
Marks
, and
D. B.
Janes
,
Nanotechnology
18
,
1
(
2007
).
18.
S. H.
Ju
,
K.
Lee
, and
D. B.
Janes
,
Nano Lett.
5
,
2281
(
2005
).
19.
T. H.
Moon
,
M. C.
Jeong
,
B. Y.
Oh
,
M. H.
Ham
,
M. H.
Jeun
,
W. Y.
Lee
, and
J. M.
Myoung
,
Nanotechnology
17
,
2116
(
2006
).
20.
T. J.
Coutts
,
D. L.
Young
, and
X. N.
Li
,
MRS Bull.
25
,
58
(
2000
).
21.
R.
Groenen
,
E. R.
Kieft
,
J. L.
Linden
, and
M. C. M.
Van De Sanden
,
J. Electron. Mater.
35
,
711
(
2006
).
22.
P. Y.
Emelie
,
J. D.
Phillips
,
B.
Buller
, and
U. D.
Venkateswaran
,
J. Electron. Mater.
35
,
525
(
2006
).
23.
J.
Kim
,
S.
Jung
,
E. J.
Choi
,
K.
Kim
,
K.
Lee
, and
S.
Im
,
Appl. Phys. Lett.
93
,
241902
(
2008
).
24.
C. A.
Wolden
,
T. M.
Barnes
,
J. B.
Baxter
, and
E. S.
Aydil
,
J. Appl. Phys.
97
,
043522
(
2005
).
25.
L. E.
Greene
,
B. D.
Yuhas
,
M.
Law
,
D.
Zitoun
, and
P. D.
Yang
,
Inorg. Chem.
45
,
7535
(
2006
).
26.
M.
Von Allmen
and
A.
Blatter
,
Laser-Beam Interactions with Materials: Physical Principles and Applications
, 2nd ed. (
Springer
,
Berlin
,
1995
), p.
194
.
27.
O.
Ambacher
,
W.
Rieger
,
P.
Ansmann
,
H.
Angerer
,
T. D.
Moustakas
, and
M.
Stutzmann
,
Solid State Commun.
97
,
365
(
1996
).
28.
W. B.
Jackson
,
N. M.
Amer
,
A. C.
Boccara
, and
D.
Fournier
,
Appl. Opt.
20
,
1333
(
1981
).
29.
N.
Kashii
,
H.
Maekawa
, and
Y.
Hinatsu
,
J. Am. Ceram. Soc.
82
,
1844
(
1999
).
30.
R.
Hansson
,
P. C.
Hayes
, and
E.
Jak
,
Metall. Mater. Trans. B
35
,
633
(
2004
).
31.
T.
Tsubota
,
M.
Ohtaki
,
K.
Eguchi
, and
H.
Arai
,
J. Mater. Chem.
7
,
85
(
1997
).
32.
S.
Yoshioka
,
F.
Oba
,
R.
Huang
,
I.
Tanaka
,
T.
Mizoguchi
, and
T.
Yamamoto
,
J. Appl. Phys.
103
,
014309
(
2008
).
33.
T.
Minami
,
H.
Sato
,
K.
Ohashi
,
T.
Tomofuji
, and
S.
Takata
,
J. Cryst. Growth
117
,
370
(
1992
).
34.
S. L.
Dexheimer
,
Terahertz Spectroscopy: Principles and Applications
(
CRC Press
,
Boca Raton, FL
,
2007
).
35.
K.
Ellmer
,
A.
Klein
, and
B.
Rech
, in
Springer Series in Materials Science
(
Springer-Verlag
,
Berlin, Heidelberg
,
2008
), Vol.
104
.
36.
T.
Pisarkiewicz
,
K.
Zakrzewska
, and
E.
Leja
,
Thin Solid Films
174
,
217
(
1989
).
37.
A. V.
Singh
,
R. M.
Mehra
,
A.
Yoshida
, and
A.
Wakahara
,
J. Appl. Phys.
95
,
3640
(
2004
).
38.
O.
Wunnicke
,
Appl. Phys. Lett.
89
,
083102
(
2006
).
39.
C.
Reese
and
Z. N.
Bao
,
J. Appl. Phys.
105
,
024506
(
2009
).
40.
J. F.
Stebbins
,
Chem. Mater.
19
,
1862
(
2007
).
41.
N.
Roberts
,
R. P.
Wang
,
A. W.
Sleight
, and
W. W.
Warren
,
Phys. Rev. B
57
,
5734
(
1998
).
You do not currently have access to this content.