We have studied the growth of room-temperature sputtered Pd films on 6H-SiC by using the atomic force microscopy technique. In particular, we analyzed the Pd film surface morphology as a function of the film thickness from 3 to 72 nm observing that the Pd grows initially (thickness 2–12 nm) as three-dimensional (3D) islands. Then (thickness 12–36 nm) the Pd film morphology evolves from compact 3D islands to partially coalesced wormlike structures, followed (36–60 nm) by a percolation morphology and finally to a continuous and rough film (at 72 nm). The application of the interrupted coalescence model allowed us to evaluate the critical mean islands diameter Rc6.6nm for the partial coalescence process while the application of the kinetic freezing model allowed us to evaluate the room-temperature Pd surface diffusion coefficient Ds1.4×1017m2/s on 6H-SiC. Finally, the application of the Vincent’s model allowed us to evaluate the critical Pd coverage Pc=68% for the percolation transition.

1.
M.
Ohring
,
The Materials Science of Thin Films
(
Academic
,
New York
,
1992
).
2.
D. L.
Smith
,
Thin Film Deposition
(
McGraw-Hill
,
New York
,
1995
).
3.
W. G.
Schmidt
,
F.
Bechstedt
, and
G. P.
Srivastava
,
Surf. Sci. Rep.
25
,
141
(
1996
).
4.
C. T.
Campbell
,
Surf. Sci. Rep.
27
,
1
(
1997
).
5.
A. -L.
Barabasi
and
H. E.
Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
Cambridge
,
1995
).
6.
M.
Zinke-Allmang
,
L. C.
Feldman
, and
M. H.
Grabov
,
Surf. Sci. Rep.
16
,
377
(
1992
).
7.
P.
Moriarty
,
Rep. Prog. Phys.
64
,
297
(
2001
).
8.
E. H.
Rhoderick
and
R. H.
Williams
,
Metal-Semiconductor Contacts
(
Clarendon
,
Oxford
,
1988
).
9.
R. T.
Tung
,
Mater. Sci. Eng. R.
35
,
1
(
2001
).
10.
L. M.
Porter
and
R. F.
Davis
,
Mater. Sci. Eng., B
34
,
83
(
1995
).
11.
R.
Wiesendanger
,
Scanning Probe Microscopy and Spectroscopy: Methods and Applications
(
Cambridge University Press
,
Cambridge
,
1994
).
12.
D.
Sarid
,
Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces
(
Oxford University Press
,
Oxford
,
1994
).
13.
C. G.
Granqvist
and
R. A.
Buhrman
,
J. Appl. Phys.
47
,
2200
(
1976
).
14.
X.
Yu
,
P. M.
Duxbury
,
G.
Jeffers
, and
M. A.
Dubson
,
Phys. Rev. B
44
,
13163
(
1991
).
15.
K. R.
Heim
,
S. T.
Coyle
,
G. G.
Hembree
,
J. A.
Venables
, and
M. R.
Scheinfein
,
J. Appl. Phys.
80
,
1161
(
1996
).
16.
L.
Zhang
,
F.
Cosandey
,
R.
Persaud
, and
T. E.
Madey
,
Surf. Sci.
439
,
73
(
1999
).
17.
J. A.
Venables
,
G. D.
Spiller
, and
M.
Hanbücken
,
Rep. Prog. Phys.
47
,
399
(
1984
).
18.
G.
Jeffers
,
M. A.
Dubson
, and
P. M.
Duxbury
,
J. Appl. Phys.
75
,
5016
(
1994
).
19.
P. M.
Duxbury
,
M.
Dubson
,
X.
Yu
, and
G.
Jeffers
,
Europhys. Lett.
26
,
601
(
1994
).
20.
R. F.
Voss
,
R. B.
Laibouitz
, and
E. I.
Alessandrini
,
Phys. Rev. Lett.
49
,
1441
(
1982
).
21.
Á.
Imre
,
D. L.
Beke
,
E.
Gontier-Moya
,
I. A.
Szabó
, and
E.
Gillet
,
Appl. Phys. A: Mater. Sci. Process.
71
,
19
(
2000
).
22.
Properties of Silicon Carbide
, edited by
G. L.
Harris
(
INSPEC
,
London
,
1995
).
23.
R. H.
Bruce
, in
Science of Ceramics
, edited by
G. H.
Stewart
(
Academic
,
London
,
1965
).
24.
B. N.
Oshcherin
,
Phys. Status Solidi A
34
,
K181
(
1976
).
25.
T.
Takai
,
T.
Halichoglu
, and
W. A.
Tiller
,
Surf. Sci.
164
,
341
(
1985
).
27.
P.
Nikolopoulos
,
S.
Agathopoulos
,
G. N.
Angelopoulos
,
A.
Naoumidis
, and
H.
Grübmeier
,
J. Mater. Sci.
27
,
139
(
1992
).
28.
R.
Vincent
,
Proc. R. Soc. London
321
,
53
(
1971
).
29.
M.
Fanfoni
,
M.
Tomellini
, and
M.
Volpe
,
Phys. Rev. B
64
,
075409
(
2001
).
30.
B. J.
Briscoe
and
K. P.
Galvin
,
J. Phys. D
23
,
422
(
1990
).
You do not currently have access to this content.