An analytical expression of the strain distribution due to lattice mismatch is obtained in an infinite isotropic elastic medium (a matrix) with a three-dimensional polyhedron-shaped inclusion (a quantum dot). The expression was obtained utilizing the analogy between electrostatic and elastic theory problems. The main idea lies in similarity of behavior of point charge electric field and the strain field induced by point inclusion in the matrix. This opens a way to simplify the structure of the expression for the strain tensor. In the solution, the strain distribution consists of contributions related to faces and edges of the inclusion. A contribution of each face is proportional to the solid angle at which the face is seen from the point where the strain is calculated. A contribution of an edge is proportional to the electrostatic potential which would be induced by this edge if it is charged with a constant linear charge density. The solution is valid for the case of inclusion having the same elastic constants as the matrix. Our method can be applied also to the case of semi-infinite matrix with a free surface. Three particular cases of the general solution are considered—for inclusions of pyramidal, truncated pyramidal, and “hut-cluster” shape. In these cases considerable simplification was achieved in comparison with previously published solutions.

1.
G. L.
Bir
and
G. E.
Pikus
,
Symmetry and Strain-Induced Effects in Semiconductors
(
Wiley
,
New York
,
1974
).
2.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
3.
A. V.
Dvurechenskii
,
A. V.
Nenashev
, and
A. I.
Yakimov
,
Nanotechnology
13
,
75
(
2002
).
4.
J.
Stangl
,
V.
Holý
, and
G.
Bauer
,
Rev. Mod. Phys.
76
,
725
(
2004
).
5.
R.
Maranganti
and
P.
Sharma
,
Handbook of Theoretical and Computational Nanotechnology
(
American Scientific Publishers
,
Valencia, CA
,
2006
) Chap. 118.
6.
M.
Grundmann
,
O.
Stier
, and
D.
Bimberg
,
Phys. Rev. B
52
,
11969
(
1995
).
7.
C.
Pryor
,
Phys. Rev. B
57
,
7190
(
1998
).
8.
O.
Stier
,
M.
Grundmann
, and
D.
Bimberg
,
Phys. Rev. B
59
,
5688
(
1999
).
9.
S.
Christiansen
,
M.
Albrecht
,
H. P.
Strunk
, and
H. J.
Maier
,
Appl. Phys. Lett.
64
,
3617
(
1994
).
10.
S.
Noda
,
T.
Abe
, and
M.
Tamura
,
Phys. Rev. B
58
,
7181
(
1998
).
11.
M. A.
Cusack
,
P. R.
Briddon
, and
M.
Jaros
,
Phys. Rev. B
54
,
R2300
(
1996
).
12.
A. V.
Nenashev
and
A. V.
Dvurechenskii
,
Zh. Eksp. Teor. Fiz.
118
,
570
(
2000
)
A. V.
Nenashev
and
A. V.
Dvurechenskii
, [
JETP
91
,
497
(
2000
)].
13.
Y.
Kikuchi
,
H.
Sugii
, and
K.
Shintani
,
J. Appl. Phys.
89
,
1191
(
2001
).
14.
I.
Daruka
,
A. -L.
Barabasi
,
S. J.
Zhou
,
T. C.
Germann
,
P. S.
Lomdahl
, and
A. R.
Bishop
,
Phys. Rev. B
60
,
R2150
(
1999
).
15.
D. A.
Faux
,
J. R.
Downes
, and
E. P.
O’Reilly
,
J. Appl. Phys.
80
,
2515
(
1996
).
16.
J. R.
Downes
,
D. A.
Faux
, and
E. P.
O’Reilly
,
J. Appl. Phys.
81
,
6700
(
1997
).
17.
V. G.
Stoleru
,
D.
Pal
, and
E.
Towe
,
Physica E
15
,
131
(
2002
).
18.
A. D.
Andreev
,
J. R.
Downes
,
D. A.
Faux
, and
E. P.
O’Reilly
,
J. Appl. Phys.
86
,
297
(
1999
).
19.
F.
Glas
,
J. Appl. Phys.
90
,
3232
(
2001
).
20.
J. D.
Eshelby
,
Proc. R. Soc. London Ser. A
241
,
376
(
1957
).
21.
J. H.
Davies
,
J. Appl. Phys.
84
,
1358
(
1998
).
22.
G. S.
Pearson
and
D. A.
Faux
,
J. Appl. Phys.
88
,
730
(
2000
).
23.
D. A.
Faux
,
J. R.
Downes
, and
E. P.
O’Reilly
,
J. Appl. Phys.
82
,
3754
(
1997
).
24.
H.
Nozaki
and
M.
Taya
,
ASME J. Appl. Mech.
68
,
441
(
2001
).
25.
J. H.
Davies
,
ASME J. Appl. Mech.
70
,
655
(
2003
).
26.
I. E.
Tamm
,
Fundamentals of the Theory of Electricity
(
Mir
,
Moscow
,
1979
), p.
82
.
27.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill
,
New York
,
1941
), p.
189
.
28.
A.
Van Oosterom
and
J.
Strackee
,
IEEE Trans. Biomed. Eng.
BME-30
,
125
(
1983
).
29.
A. V.
Nenashev
and
A. V.
Dvurechenskii
, e-print arXiv:0707.2183 [cond-mat].
30.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Butterworth-Heinemann
,
Oxford
,
1986
).
You do not currently have access to this content.