In situ laser-based resonant ultrasound spectroscopy is used to characterize the development of a recrystallized microstructure in a high purity copper sample. The modal shapes, used for mode identification, of several resonant modes are determined before and after annealing by raster scanning the laser interferometric probe. This information is used to isolate the motion of individual modes during high temperature annealing. The evolution of a particular mode during annealing is examined in detail. During recrystallization, the center frequency of this mode shifts by approximately 20% of the original value. Using electron backscatter data it is shown that the majority of this shift is due to changes in the polycrystal average elastic stiffness tensor, driven by changes in texture, and that changes in dislocation density and pinning length are secondary influences.

1.
A.
Migliori
,
J. L.
Sarrao
,
W. M.
Visscher
,
T. M.
Bell
,
M.
Lei
,
Z.
Fisk
, and
R. G.
Leisure
,
Physica B
183
,
1
(
1993
).
2.
W. M.
Visscher
,
A.
Migliori
,
T. M.
Bell
, and
R. A.
Reinert
,
J. Acoust. Soc. Am.
90
,
2154
(
1991
).
3.
H.
Ledbetter
,
C.
Fortunko
, and
P.
Heyliger
,
J. Mater. Res.
10
,
1352
(
1995
).
4.
W.
Johnson
,
J. Appl. Phys.
83
,
2462
(
1998
).
5.
J. D.
Eshelby
,
Philos. Trans. R. Soc. London, Ser. A
197
,
396
(
1949
).
6.
J. S.
Koehler
, in
Imperfection in Nearly Perfect Crystals
, edited by
W.
Shockley
(
Wiley
,
New York
,
1952
).
7.
D. O.
Thompson
and
D. K.
Holmes
,
J. Appl. Phys.
27
,
713
(
1956
).
8.
A. V.
Granato
and
K.
Lücke
,
J. Appl. Phys.
27
,
583
(
1956
).
9.
K.
Lücke
and
A. V.
Granato
,
Phys. Rev. B
24
,
6991
(
1981
).
10.
H. M.
Simpson
and
S. J.
Kerkhoff
,
Phys. Rev. Lett.
33
,
155
(
1974
).
11.
H. M.
Simpson
,
A.
Sosin
, and
D. F.
Johnson
,
Phys. Rev. B
5
,
1393
(
1972
).
12.
D. M.
Parkin
,
J. A.
Goldstone
,
H. M.
Simpson
, and
J. M.
Hemsky
,
J. Phys. F: Met. Phys.
17
,
577
(
1987
).
13.
J. N.
Lomer
and
R. J.
Taylor
,
Philos. Mag.
19
,
437
(
1969
).
14.
L. E.
Rehn
,
J.
Holder
,
A. V.
Granato
,
R. R.
Coltman
, and
F. W.
Young
, Jr.
,
Phys. Rev. B
10
,
349
(
1974
).
15.
W.
Benoit
,
Mater. Sci. Eng., A
370
,
12
(
2004
).
16.
J.
Woirgard
,
J. P.
Amiroult
, and
J.
DeFouguet
, in
Proceedings of Fifth International Conference on Internal Friction and Ultrasonic Attenuation in Solids
, edited by
D.
Lenz
and
K.
Lucke
(
Springer-Verlag
,
Berlin
,
1975
), Vol.
1
, p.
392
.
17.
P.
Gondi
,
R.
Tognato
, and
E.
Evangelista
,
Phys. Status Solidi A
33
,
579
(
1976
).
18.
N. A.
Akhmadeev
,
N. P.
Kobelev
,
R. R.
Mulyukov
,
Y. M.
Soifer
, and
R. Z.
Valiev
,
Acta Metall. Mater.
41
,
1041
(
1993
).
19.
20.
K.
Foster
,
S. L.
Fairburn
,
R. G.
Leisure
,
S.
Kim
,
D.
Balzar
,
G.
Alers
, and
H.
Ledbetter
,
J. Acoust. Soc. Am.
105
,
2663
(
1999
).
21.
S.
Sato
,
K.
Inagaki
,
V. E.
Gusev
, and
O. B.
Wright
, presented at
Tenth International Conference in Photoacoustic and Photothermal Phenomena
, Rome, Italy (
1998
), pp.
23
27
.
22.
R. S.
Schley
,
K. L.
Telschow
,
J. B.
Walter
, and
D. L.
Cottle
,
Nucl. Technol.
159
,
202
(
2007
).
23.
S. J.
Reese
,
K. L.
Telschow
,
T. M.
Lillo
, and
D. H.
Hurley
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
770
(
2008
).
24.
R. K.
Ing
and
J. P.
Monchalin
,
Appl. Phys. Lett.
59
,
3233
(
1991
).
25.
B. F.
Pouet
,
R. K.
Ing
,
S.
Krishnaswamy
, and
D.
Royer
,
Appl. Phys. Lett.
69
,
3782
(
1996
).
26.
E. F.
Lafond
,
P. H.
Brodeur
,
J. P.
Gerhardstein
,
C. C.
Habeger
, and
K. L.
Telschow
,
Ultrasonics
40
,
1019
(
2002
).
27.
For the in situ test, a 1064 nm pulsed laser was used for ultrasonic generation and a 532 nm interferometer, utilizing a bismuth silicon oxide photorefractive element, was used for detection.
28.
W. M.
Baldwin
,
Trans. Am. Inst. Min., Metall. Pet. Eng.
166
,
591
(
1942
).
29.
R. D.
Doherty
,
D. A.
Hughes
,
F. J.
Humphreys
,
J. J.
Jonas
,
D. J.
Jensen
,
M. E.
Kassner
,
W. E.
King
,
T. R.
McNelley
,
H. J.
McQueen
, and
A. D.
Rollett
,
Mater. Sci. Eng., A
238
,
219
(
1997
).
30.
R.
Hill
,
Proc. Phys., Soc. London, Sect. A
65
,
349
(
1952
).
31.
H. M.
Ledbetter
,
J. Phys. D: Appl. Phys.
13
,
1879
(
1980
).
32.
The average grain size for the rolled and annealed samples is 1.5 and 76μm2, respectively. For the rolled sample the scanned area is 350×100μm, containing 647500 points. The scanned area for the annealed sample is 800×800μm, totaling 740000 points.
33.
C.
Zener
,
Elasticity and Anelasticity of Metals
(
University of Chicago Press
,
Chicago
,
1948
).
34.
G. W.
Farnell
, in
Physical Acoustics
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic
,
New York
,
1970
), Vol.
6
, pp.
136
.
35.
H.
Ogi
,
K.
Sato
,
T.
Asada
, and
M.
Hirao
,
J. Acoust. Soc. Am.
112
,
2553
(
2002
).
36.
At the end of the heating cycle the center frequencies of the tracked and untracked modes are 143.5 and 141.5 kHz, respectively.
You do not currently have access to this content.