We demonstrate GaInN multiple quantum well (MQW) light-emitting diodes (LEDs) having ternary GaInN quantum barriers (QBs) instead of conventional binary GaN QBs for a reduced polarization mismatch between QWs and QBs and an additional separate confinement of carriers to the MQW active region. In comparison with GaInN LEDs with conventional GaN QBs, the GaInN/GaInN LEDs show a reduced blueshift of the peak wavelength with increasing injection current and a reduced forward voltage. In addition, we investigate the density of pits emerging on top of the MQW layer that are correlated with V-defects and act as a path for the reverse leakage current. The GaInN/GaInN MQW structure has a lower pit density than the GaInN/GaN MQW structure as well as a lower reverse leakage current. Finally, the GaInN/GaInN MQW LEDs show higher light output power and external quantum efficiency at high injection currents compared to the conventional GaInN/GaN MQW LEDs. We attribute these results to the reduced polarization mismatch and the reduced lattice mismatch in the GaInN/GaInN MQW active region.

1.
E. F.
Schubert
,
Light-Emitting Diodes
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
2006
).
2.
M. -H.
Kim
,
M. F.
Schubert
,
Q.
Dai
,
J. K.
Kim
,
E. F.
Schubert
,
J.
Piprek
, and
Y.
Park
,
Appl. Phys. Lett.
91
,
183507
(
2007
).
3.
M. F.
Schubert
,
J.
Xu
,
J. K.
Kim
,
E. F.
Schubert
,
M. H.
Kim
,
S.
Yoon
,
S. M.
Lee
,
C.
Sone
,
T.
Sakong
, and
Y.
Park
,
Appl. Phys. Lett.
93
,
041102
(
2008
).
4.
J.
Xu
,
M. F.
Schubert
,
A. N.
Noemaun
,
J. K.
Kim
,
E. F.
Schubert
,
M. H.
Kim
,
H. J.
Chung
,
S.
Yoon
,
C.
Sone
, and
Y.
Park
,
Appl. Phys. Lett.
94
,
011113
(
2009
).
5.
A.
Knauer
,
H.
Wenzel
,
T.
Kolbe
,
S.
Einfeldt
,
M.
Weyers
,
M.
Kneissl
, and
G.
Tränkle
,
Appl. Phys. Lett.
92
,
191912
(
2008
).
6.
J. -H.
Ryou
,
W.
Lee
,
J.
Limb
,
D.
Yoo
,
J. P.
Liu
,
R. D.
Dupuis
,
Z. H.
Wu
,
A. M.
Fischer
, and
F. A.
Ponce
,
Appl. Phys. Lett.
92
,
101113
(
2008
).
7.
C. -Y.
Wang
,
L. -Y.
Chen
,
C. -P.
Chen
,
Y. -W.
Cheng
,
M. -Y.
Ke
,
M. -Y.
Hsieh
,
H. -M.
Wu
,
L. -H.
Peng
, and
J.
Huang
,
Opt. Express
16
,
10549
(
2008
).
8.
T.
Asano
,
T.
Tojyo
,
T.
Mizuno
,
M.
Takeya
,
S.
Ikeda
,
K.
Shibuya
,
T.
Hino
,
S.
Uchida
, and
M.
Ikeda
,
IEEE J. Quantum Electron.
39
,
135
(
2003
).
9.
K.
Iso
,
H.
Yamada
,
H.
Hirasawa
,
N.
Fellows
,
M.
Saito
,
K.
Fujito
,
S. P.
DenBaars
,
J. S.
Speck
, and
S.
Nakamura
,
Jpn. J. Appl. Phys., Part 2
46
,
L960
(
2007
).
10.
M.
Funato
,
M.
Ueda
,
Y.
Kawakami
,
Y.
Narukawa
,
T.
Kosugi
,
M.
Takahashi
, and
T.
Mukai
,
Jpn. J. Appl. Phys., Part 2
45
,
L659
(
2006
).
11.
M. -H.
Kim
,
W.
Lee
,
D.
Zhu
,
M. F.
Schubert
,
J. K.
Kim
,
E. F.
Schubert
, and
Y.
Park
,
IEEE J. Sel. Top. Quantum Electron.
15
,
1122
(
2009
).
12.
F.
Bernardini
, in
Nitride Semiconductor Devices: Principles and Simulation
, edited by
J.
Piprek
(
Wiley
,
New York
,
2007
), pp.
49
67
.
13.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
,
R10024
(
1997
).
14.
X. H.
Wu
,
C. R.
Elsass
,
A.
Abare
,
M.
Mack
,
S.
Keller
,
P. M.
Petroff
,
S. P.
DenBarrs
,
J. S.
Speck
, and
S. J.
Rosner
,
Appl. Phys. Lett.
72
,
692
(
1998
).
15.
Y.
Chen
,
T.
Takeuchi
,
H.
Amano
,
I.
Akasaki
,
N.
Yamada
,
Y.
Kaneko
, and
S. Y.
Wang
,
Appl. Phys. Lett.
72
,
710
(
1998
).
16.
I. -H.
Kim
,
H. -S.
Park
,
Y. -J.
Park
, and
T.
Kim
,
Appl. Phys. Lett.
73
,
1634
(
1998
).
17.
D.
Cherns
,
S. J.
Henley
, and
F. A.
Ponce
,
Appl. Phys. Lett.
78
,
2691
(
2001
).
18.
X. A.
Cao
,
J. A.
Teetsov
,
F.
Shahedipour-Sandvik
, and
S. D.
Arthur
,
J. Cryst. Growth
264
,
172
(
2004
).
19.
D. S.
Li
,
H.
Chen
,
H. B.
Yu
,
H. Q.
Jia
,
Q.
Huang
, and
J. M.
Zhou
,
Appl. Phys. Lett.
96
,
1111
(
2004
).
You do not currently have access to this content.