The electronic structure as well as the optical response of kesterite and stannite structures of Cu2ZnSnS4 and Cu2ZnSnSe4 are analyzed by a relativistic full-potential linearized augmented plane wave method. The energy dispersion of the conduction-band edge reveals larger effective electron mass of the two Cu2ZnSnS4 compounds (mc10.18m0) compared with Cu2ZnSnSe4(mc10.07m0). Whereas the effective electron mass tensor is fairly isotropic, the effective hole masses show strong anisotropy. The fundamental band-gap energy is estimated to be Eg1.5eV for Cu2ZnSnS4 and Eg1.0eV for Cu2ZnSnSe4. The larger band gap results in a smaller high-frequency dielectric constant: ε6.7 for Cu2ZnSnS4 whereas ε8.6 for Cu2ZnSnSe4. The characteristic anisotropy of the dielectric function ε(ω) in the stannite compounds allows for a complementary identification of the crystalline structure type. Overall, however, all four compounds show similar atomic-resolved density-of-states, dielectric function, and optical absorption coefficient α(ω).

1.
K.
Ito
and
T.
Nakazawa
,
Jpn. J. Appl. Phys., Part 1
27
,
2094
(
1988
).
2.
Th. M.
Friedlmeier
,
N.
Wieser
,
T.
Walter
,
H.
Dittrich
, and
H. -W.
Schock
,
Proceedings of the 14th European Conference on Photovoltaic Solar Energy Exhibition
, Belford,
1997
(unpublished), p.
1242
.
3.
K.
Jimbo
,
R.
Kimura
,
T.
Kamimura
,
S.
Yamada
,
W. S.
Maw
,
H.
Araki
,
K.
Oishi
, and
H.
Katagiri
,
Thin Solid Films
515
,
5997
(
2007
).
4.
H.
Katagiri
,
K.
Jimbo
,
S.
Yamada
,
T.
Kamimura
,
W. S.
Maw
,
T.
Fukano
,
T.
Ito
, and
T.
Motohiro
,
Appl. Phys. Express
1
,
041201
(
2008
).
5.
A.
Ennaoui
,
M.
Lux-Steiner
,
A.
Weber
,
D.
Abou-Ras
,
I.
Kötschau
,
H. -W.
Schock
,
R.
Schurr
,
A.
Hölzing
,
S.
Jost
,
R.
Hock
,
T.
Voß
,
J.
Schulze
, and
A.
Kirbs
,
Thin Solid Films
517
,
2511
(
2009
).
6.
H.
Katagiri
,
K.
Saitoh
,
T.
Washio
,
H.
Shinohara
,
T.
Kurumadani
, and
S.
Miyajima
,
Sol. Energy Mater. Sol. Cells
65
,
141
(
2001
).
7.
J. -S.
Seol
,
S. -Y.
Lee
,
J. -C.
Lee
,
H. -D.
Nam
, and
K. -H.
Kim
,
Sol. Energy Mater. Sol. Cells
75
,
155
(
2003
).
8.
T.
Tanaka
,
T.
Nagatomo
,
D.
Kawasaki
,
M.
Nishio
,
Q.
Guo
,
A.
Wakahara
,
A.
Yoshida
, and
H.
Ogawa
,
J. Phys. Chem. Solids
66
,
1978
(
2005
).
9.
K.
Moriya
,
J.
Watabe
,
K.
Tanaka
, and
H.
Uchiki
,
Phys. Status Solidi C
3
,
2848
(
2006
).
10.
J. J.
Scragg
,
P. J.
Dale
, and
L. M.
Peter
,
Electrochem. Commun.
10
,
639
(
2008
).
11.
H.
Hahn
and
H.
Schulze
,
Naturwiss.
52
,
426
(
1965
).
12.
L.
Guen
,
W. S.
Glaunsinger
, and
A.
Wold
,
Mater. Res. Bull.
14
,
463
(
1979
).
13.
R.
Nitsche
,
D. F.
Sargent
, and
P.
Wild
,
J. Cryst. Growth
1
,
52
(
1967
).
14.
W.
Schäfer
and
R.
Nitsche
,
Mater. Res. Bull.
9
,
645
(
1974
).
15.
S. R.
Hall
,
J. T.
Szymanski
, and
J. M.
Stewart
,
Can. Mineral.
16
,
131
(
1978
).
16.
H.
Matsushita
,
T.
Maeda
,
A.
Katsui
, and
T.
Takizawa
,
J. Cryst. Growth
208
,
416
(
2000
).
17.
I. D.
Olekseyuk
,
L. D.
Gulay
,
I. V.
Dydchak
,
L. V.
Piskach
,
O. V.
Parasyuk
, and
O. V.
Marchuk
,
J. Alloys Compd.
340
,
141
(
2002
).
18.
S.
Schorr
,
Thin Solid Films
515
,
5985
(
2007
).
19.
G. S.
Babu
,
Y. B. K.
Kumar
,
P. U.
Bhaskar
, and
V. S.
Raja
,
Semicond. Sci. Technol.
23
,
085023
(
2008
).
20.
S.
Schorr
,
H. -J.
Hoebler
, and
M.
Tovar
,
Eur. J. Mineral.
19
,
65
(
2007
).
21.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S. -H.
Wei
,
Appl. Phys. Lett.
94
,
041903
(
2009
).
22.
P.
Blaha
,
K.
Schwarz
,
G. K. H.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
,
WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(
Karlheinz Schwarz, Techn. Universität
,
Wien, Austria
,
2001
).
23.
C.
Persson
,
Appl. Phys. Lett.
93
,
072106
(
2008
).
24.
E.
Engel
and
S. H.
Vosko
,
Phys. Rev. B
47
,
13164
(
1993
).
25.
C.
Persson
,
R.
Ahuja
, and
B.
Johansson
,
Phys. Rev. B
64
,
033201
(
2001
).
26.
C.
Persson
and
A.
Zunger
,
Phys. Rev. B
68
,
073205
(
2003
);
C.
Persson
and
A.
Zunger
,
Appl. Phys. Lett.
87
,
211904
(
2005
);
C.
Persson
,
C.
Platzer-Björkman
,
J.
Malmström
,
T.
Törndahl
, and
M.
Edoff
,
Phys. Rev. Lett.
97
,
146403
(
2006
).
[PubMed]
27.
F.
Bechstedt
and
R.
Del Sole
,
Phys. Rev. B
38
,
7710
(
1988
).
28.
G. F.
Koster
,
J. O.
Dimmock
,
R. G.
Wheeler
, and
H.
Statz
,
Properties of the Thirty-Two Point Groups
(
MIT
,
Cambridge, MA
,
1963
).
29.
C.
Persson
,
B. E.
Sernelius
,
A.
Ferreira da Silva
,
R.
Ahuja
, and
B.
Johansson
,
J. Phys.: Condens. Matter
13
,
8915
(
2001
).
30.
C.
Ambrosch-Draxl
and
J. O.
Sofo
,
Comput. Phys. Commun.
175
,
1
(
2006
).
31.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
);
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
32.
P.
Villars
and
L. D.
Calvert
,
Pearson’s Handbook of Crystallographic Data for Intermetallic Phases
, 2nd ed. (
ASM International
,
Ohio
,
1996
).
33.
S.
Siebentritt
,
M.
Igalson
,
C.
Persson
, and
S.
Lany
, “
The electronic structure of chalcopyrites–bands, point defects and grain boundaries
,”
Prog. Photovolt. Res. Appl.
(to be published).
34.
C.
Persson
and
U.
Lindefelt
,
J. Appl. Phys.
86
,
5036
(
1999
).
35.
Semiconductor—Basic Data
, 2nd ed., edited by
O.
Madelung
(
Springer
,
Berlin
,
1996
).
36.
T.
Matsuoka
,
H.
Okamoto
,
M.
Nakao
,
H.
Harima
, and
E.
Kurimoto
,
Appl. Phys. Lett.
81
,
1246
(
2002
);
C.
Persson
,
R.
Ahuja
,
A.
Ferreira da Silva
, and
B.
Johansson
,
J. Phys.: Condens. Matter
13
,
8945
(
2001
).
You do not currently have access to this content.