The primary excited state decay processes relating to the H613/2H615/23μm laser transition in singly Dy3+-doped fluoride (ZBLAN) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the F69/2, H67/2 energy levels at 1125 nm and F611/2, H69/2 energy levels at 1358 nm established that the energy levels above the H611/2 level, excluding the F49/2 level, are entirely quenched by multiphonon emission in ZBLAN glass. The H611/2 and H613/2 energy levels emit luminescence with peaks at 1700 and 2880nm, respectively, but at low quantum (luminescence) efficiencies. The quantum efficiency of the H611/2 level and H613/2 level is 9×105 and 1.3×102, respectively, for [Dy3+]=0.5mol% based on calculations of the radiative lifetimes using the Judd–Ofelt theory. Excited state absorption (ESA) was detected by monitoring the rise time of the 1700 nm luminescence after tuning the probe wavelength across the spectral range from 1100 to 1400 nm. As a result of nonradiative decay of the higher excited states, ESA contributes to the heating of 3μm fiber lasers based on Dy3+-doped fluoride glass. For [Dy3+] up to 4 mol %, we found no evidence of energy transfer processes between Dy3+ ions that influence the decay characteristics of the H611/2 and H613/2 energy levels.

1.
S. R.
Bowman
,
IEEE J. Quantum Electron.
32
,
646
(
1996
).
2.
M. C.
Nostrand
,
R. H.
Page
,
S. A.
Payne
,
L. I.
Isaenko
, and
A. P.
Yelisseyev
,
J. Opt. Soc. Am. B
18
,
264
(
2001
).
3.
T.
Schweizer
,
D. W.
Hewak
,
B. N.
Samson
, and
D. N.
Payne
,
Opt. Lett.
21
,
1594
(
1996
).
4.
S. D.
Jackson
,
Appl. Phys. Lett.
83
,
1316
(
2003
).
5.
Y. H.
Tsang
,
A. E.
El-Taher
,
T. A.
King
, and
S. D.
Jackson
,
Opt. Express
14
,
678
(
2006
).
6.
J. L.
Adam
,
A. D.
Docq
, and
J.
Lucas
,
J. Solid State Chem.
75
,
403
(
1988
).
7.
B. M.
Walsh
,
N. P.
Barnes
, and
B.
Di Bartolo
,
J. Appl. Phys.
83
,
2772
(
1998
).
8.
R.
Piramidowicz
,
M.
Klimczak
, and
M.
Malinowski
,
Opt. Mater. (Amsterdam, Neth.)
30
,
707
(
2008
).
9.
L.
Wetenkamp
,
G. F.
West
, and
H.
Többen
,
J. Non-Cryst. Solids
140
,
35
(
1992
).
10.
W. T.
Carnall
,
P. R.
Fields
, and
K.
Rajnak
,
J. Chem. Phys.
49
,
4424
(
1968
).
11.
A. F. H.
Librantz
,
S. D.
Jackson
,
F. H.
Jagosich
, and
L.
Gomes
,
J. Appl. Phys.
101
,
123111
(
2007
).
12.
M. C.
Gonçalves
and
R. M.
Almeida
,
J. Non-Cryst. Solids
194
,
180
(
1996
).
13.
I. M.
Ranieri
,
S. L.
Baldochi
,
A. M. E.
Santo
,
L.
Gomes
,
L. C.
Courrol
,
L. V. G.
Tarelho
,
W.
de Rossi
,
J. R.
Berretta
,
F. E.
Costa
,
G. E. C.
Nogueira
,
N. U.
Wetter
,
D. M.
Zezell
,
N. D.
Vieira
, Jr.
, and
S. P.
Morato
,
J. Cryst. Growth
166
,
423
(
1996
).
14.
C. K.
Jayasankar
and
E.
Rukmini
,
Physica B
240
,
273
(
1997
).
15.
S. E.
Ivanova
and
A. M.
Tkachuk
,
Opt. Spectrosc.
87
,
42
(
1999
).
16.
N. P.
Barnes
and
R. E.
Allen
,
IEEE J. Quantum Electron.
27
,
277
(
1991
).
17.
L. F.
Johnson
and
H. J.
Guggenheim
,
Appl. Phys. Lett.
23
,
96
(
1973
).
18.
A.
Toncelli
,
M.
Tonelli
,
A.
Cassanho
, and
H. P.
Jenssen
,
J. Lumin.
82
,
291
(
1999
).
You do not currently have access to this content.