Immunomagnetic separation (IMS) is a method to isolate biomaterials from a host fluid in which specifically selected antibodies attached to magnetic particles bind with their corresponding antigens on the surface of the target biological entities. A magnet separates these entities from the fluid through magnetophoresis. The method has promising applications in microscale biosensors. We develop a comprehensive model to characterize the interaction between target species and magnetic particles in microfluidic channels. The mechanics of the separation of target nonmagnetic N particles by magnetic M particles are investigated using a particle dynamics simulation. We consider both interparticle magnetic interactions and the binding of the functionalizing strands of complementary particles. The temporal growth of a particle aggregate and the relative concentrations of M and N particles are investigated under different operating conditions. A particle aggregate first grows and then exhibits periodic washaway about a quasisteady mean size. The washaway frequency and amplitude depend on the initial fractional concentration of N particles while the aggregate size scales linearly with the dipole strength and inversely with the fluid flow rate.

1.
I.
Safarik
and
M.
Safariková
,
J. Chromatogr., B: Biomed. Sci. Appl.
722
,
33
(
1999
).
2.
O.
Olsvik
,
T.
Popovic
,
E.
Skjerve
,
K. S.
Cudjoe
,
E.
Hornes
,
J.
Ugelstad
, and
M.
Uhlen
,
Clin. Microbiol. Rev.
7
,
43
(
1994
).
3.
A.
Sinha
,
R.
Ganguly
,
A. K.
De
, and
I. K.
Puri
,
Phys. Fluids
19
,
117102
(
2007
).
4.
H.
Yu
,
J. W.
Raymonda
,
T. M.
McMahon
, and
A. A.
Campagnari
,
Biosens. Bioelectron.
14
,
829
(
2000
).
5.
O.
Rotariu
,
N. J. C.
Strachan
, and
V.
Badescu
,
Phys. Med. Biol.
49
,
3971
(
2004
).
6.
R.
Kindervater
,
W.
Künnecke
, and
R. D.
Schmid
,
Anal. Chim. Acta
234
,
113
(
1990
).
8.
J. M.
Van Emon
and
C. L.
Gerlach
,
J. Microbiol. Methods
32
,
121
(
1998
).
9.
Z.
Jiang
,
J.
Llandro
,
T.
Mitrelias
, and
J. A. C.
Bland
,
50th Annual Conference on Magnetism and Magnetic Materials
, San Jose, California USA,
2006
(unpublished).
10.
S.
Bronzeau
and
N.
Pamme
,
Anal. Chim. Acta
609
,
105
(
2008
).
11.
L. G.
Rashkovetsky
,
Y. V.
Lyubarskaya
,
F.
Foret
,
D. E.
Hughes
, and
B. L.
Karger
,
J. Chromatogr., A
781
,
197
(
1997
).
12.
M. A.
Hayes
,
N. A.
Polson
,
A. N.
Phayre
, and
A. A.
Garcia
,
Anal. Chem.
73
,
5896
(
2001
).
13.
K.
Nandy
,
S.
Chaudhuri
,
R.
Ganguly
, and
I. K.
Puri
,
J. Magn. Magn. Mater.
320
,
1398
(
2008
).
14.
T.
Baier
,
S.
Mohanty
,
K.
Drese
,
F.
Rampf
,
J.
Kim
, and
F.
Schönfeld
,
Microfluid. Nanofluid.
7
,
205
(
2009
).
15.
S.
Melle
,
O. G.
Calderón
,
M. A.
Rubio
, and
G. G.
Fuller
,
Phys. Rev. E
68
,
041503
(
2003
).
16.
E. P.
Furlani
,
J. Appl. Phys.
99
,
024912
(
2006
).
17.
N.
Ichikawa
,
K.
Hosokawa
, and
R.
Maeda
,
J. Colloid Interface Sci.
280
,
155
(
2004
).
18.
N.
Modak
,
A.
Datta
, and
R.
Ganguly
,
Microfluid. Nanofluid.
6
,
647
(
2009
).
19.
S. L.
Dance
,
E.
Climent
, and
M. R.
Maxey
,
Phys. Fluids
16
,
828
(
2004
).
20.
T. R.
Strick
,
J. -F.
Allemand
,
D.
Bensimon
,
A.
Bensimon
, and
V.
Croquette
,
Science
271
,
1835
(
1996
).
21.
A.
Sinha
,
R.
Ganguly
, and
I. K.
Puri
,
J. Magn. Magn. Mater.
321
,
2251
(
2009
).
You do not currently have access to this content.