Epitaxial thin films presenting various thicknesses were grown by pulsed laser deposition on epitaxial (100) platinum bottom layers supported by (100)MgO single crystal substrates. X-ray diffraction data indicated that all layers are single-phased and that (100)-oriented (NBT) crystallites are extremely predominant. The thinner films (respectively 230 and 400 nm) display a quasiunique (100) orientation (close to 100%), whereas for the thickest film (610 nm), the proportion of (100)-oriented crystallites decreases to . Such variation is supposed to result from the degree of misorientation of the Pt layer. Further x-ray investigations revealed a pronounced asymmetry of the (100)NBT reflection. Such asymmetry is also observed in the (310)NBT reciprocal space maps. The analysis of the asymmetrical broadening of the reciprocal lattice point suggests a variation in the chemical composition across the samples thickness, in agreement with comparative Rutherford backscattering spectroscopy (RBS) data. In addition, x-ray diffraction -scans data indicate the systematic epitaxial growth of the (100)-oriented crystallites. The observation of the microstructure of films completely corroborates the x-ray diffraction information. Whereas the two thinnest films are characterized by the presence of only one type of grains: i.e., very fine and spherical grains (around 50–100 nm in size), the thickest film is characterized by the presence of two types of grains: the aforementioned one and some elongated and “factory roof”-like grains. Thus, we unambiguously attribute that the spherical grains correspond to (100)-oriented crystallites, whereas the “factory roof”-like grains are (110)-oriented. The room temperature macroscopic ferroelectric properties were measured only for the thickest film. A rather well-defined shape of the polarization-electric (P-E) field hysteresis loops was recorded, and a vertical drift of the loops was systematically observed. Recentering the hysteresis loops leads to a value of , associated to a coercive field of about 94 kV/cm. This P-E vertical drift originates from the very asymmetric conduction of the Pt/NBT/Pt capacitors at different polarities, as testified by the current density-electric field curves. Such drift can be caused by the existence of different barrier heights at the bottom and top interfaces. In addition, based on the combined RBS and x-ray data, we suggest that the chemical composition variation across the layer also impacts on the polarization vertical drift. Finally, the nanoscale electrical properties of the thinnest film have been characterized by both tunneling atomic force microscopy (TUNA) and piezoforce microscopy (PFM). The TUNA data revealed that leakage currents cannot be noticeably detected below 8 or 10 V, in negative or positive biases, respectively. The PFM data showed that most of the grains seem to be constituted of single ferroelectric domains. In addition, the recorded piezoloops are strongly distorted, and systematically remain in the vertical positive side, in agreement with the vertical drift observed for the macroscopic ferroelectric data. The presence of self-polarization within our thinnest film is finally invoked, and supported by some piezohistogram, in order to justify the distorted shape of the loops as well as the supplementary horizontal shift.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
,
,
,
,
Article navigation
1 February 2010
Research Article|
February 01 2010
Macroscopic and nanoscale electrical properties of pulsed laser deposited (100) epitaxial lead-free thin films Available to Purchase
M. Bousquet;
M. Bousquet
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
J.-R. Duclère;
J.-R. Duclère
a)
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
C. Champeaux;
C. Champeaux
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
A. Boulle;
A. Boulle
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
P. Marchet;
P. Marchet
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
A. Catherinot;
A. Catherinot
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
A. Wu;
A. Wu
2Department of Ceramics and Glass Engineering, Centre for Research in Ceramics and Composite Materials,
Campus Universitário
, Aveiro 3810-193, Portugal
Search for other works by this author on:
P. M. Vilarinho;
P. M. Vilarinho
2Department of Ceramics and Glass Engineering, Centre for Research in Ceramics and Composite Materials,
Campus Universitário
, Aveiro 3810-193, Portugal
Search for other works by this author on:
S. Députier;
S. Députier
3Unité Sciences Chimiques de Rennes,
UMR 6226 CNRS—Université de Rennes 1
, Equipe Chimie du Solide et Matériaux, Rennes Cedex 35042, France
Search for other works by this author on:
M. Guilloux-Viry;
M. Guilloux-Viry
3Unité Sciences Chimiques de Rennes,
UMR 6226 CNRS—Université de Rennes 1
, Equipe Chimie du Solide et Matériaux, Rennes Cedex 35042, France
Search for other works by this author on:
A. Crunteanu;
A. Crunteanu
4XLIM—UMR 6172 CNRS 6172,
Université de Limoges, Faculté des Sciences et Techniques
, 123, avenue Albert Thomas, Limoges Cedex 87060, France
Search for other works by this author on:
B. Gautier;
B. Gautier
5Institut des Nanotechnologies de Lyon,
INSA de Lyon
, 7, avenue Capelle, Villeurbanne Cédex 69621, France
Search for other works by this author on:
D. Albertini;
D. Albertini
5Institut des Nanotechnologies de Lyon,
INSA de Lyon
, 7, avenue Capelle, Villeurbanne Cédex 69621, France
Search for other works by this author on:
C. Bachelet
C. Bachelet
6Laboratoire CSNSM-IN2P3/CNRS, Equipe SEMIRAMIS, Bât. 108,
Université de Paris Sud
, Orsay 91405, France
Search for other works by this author on:
M. Bousquet
1
J.-R. Duclère
1,a)
C. Champeaux
1
A. Boulle
1
P. Marchet
1
A. Catherinot
1
A. Wu
2
P. M. Vilarinho
2
S. Députier
3
M. Guilloux-Viry
3
A. Crunteanu
4
B. Gautier
5
D. Albertini
5
C. Bachelet
6
1Laboratoire de Science des Procédés Céramiques et de Traitements de Surface, UMR 6638 CNRS,
Université de Limoges
, Faculté des Sciences, 123, avenue Albert Thomas, Limoges Cedex 87060, France
2Department of Ceramics and Glass Engineering, Centre for Research in Ceramics and Composite Materials,
Campus Universitário
, Aveiro 3810-193, Portugal
3Unité Sciences Chimiques de Rennes,
UMR 6226 CNRS—Université de Rennes 1
, Equipe Chimie du Solide et Matériaux, Rennes Cedex 35042, France
4XLIM—UMR 6172 CNRS 6172,
Université de Limoges, Faculté des Sciences et Techniques
, 123, avenue Albert Thomas, Limoges Cedex 87060, France
5Institut des Nanotechnologies de Lyon,
INSA de Lyon
, 7, avenue Capelle, Villeurbanne Cédex 69621, France
6Laboratoire CSNSM-IN2P3/CNRS, Equipe SEMIRAMIS, Bât. 108,
Université de Paris Sud
, Orsay 91405, France
a)
Author to whom correspondence should be addressed. Electronic mail: [email protected]. Tel.: +33555457462.
J. Appl. Phys. 107, 034102 (2010)
Article history
Received:
June 21 2009
Accepted:
December 12 2009
Citation
M. Bousquet, J.-R. Duclère, C. Champeaux, A. Boulle, P. Marchet, A. Catherinot, A. Wu, P. M. Vilarinho, S. Députier, M. Guilloux-Viry, A. Crunteanu, B. Gautier, D. Albertini, C. Bachelet; Macroscopic and nanoscale electrical properties of pulsed laser deposited (100) epitaxial lead-free thin films. J. Appl. Phys. 1 February 2010; 107 (3): 034102. https://doi.org/10.1063/1.3290956
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Related Content
Electrical properties of (110) epitaxial lead-free ferroelectric Na0.5Bi0.5TiO3 thin films grown by pulsed laser deposition: Macroscopic and nanoscale data
J. Appl. Phys. (May 2012)
Thickness effect on nanoscale electromechanical activity in Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films studied by piezoresponse force microscopy
J. Appl. Phys. (November 2011)
Ferroelectric size effects in multiferroic Bi Fe O 3 thin films
Appl. Phys. Lett. (June 2007)
Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic
J. Appl. Phys. (June 2013)
Ferroelectric Pb(Zr,Ti)O3 epitaxial layers on GaAs
Appl. Phys. Lett. (November 2013)