Freestanding nanocrystalline β-Ga2O3 particles with an average grain size of 14 nm prepared by chemical method was investigated by angle-dispersive synchrotron x-ray diffraction in diamond-anvil cell up to 64.9 GPa at ambient temperature. The evolution of x-ray diffraction patterns indicated that nanocrystalline monoclinic β-Ga2O3 underwent a phase transition to rhombohedral α-Ga2O3. It was found that β- to α-Ga2O3 transition began at about 13.6–16.4 GPa, and extended up to 39.2 GPa. At the highest pressure used, only α-Ga2O3 was present, which remained after pressure release. A Birch–Murnaghan fit to the P-V data yielded a zero-pressure bulk modulus at fixed B0=4: B0=228(9)GPa and B0=333(19)GPa for β-Ga2O3 and α-Ga2O3 phases, respectively. We compared our results with bulk β-Ga2O3, and concluded that the phase-transition pressure and bulk modulus of nanocrystalline β-Ga2O3 are higher than those of bulk counterpart.

1.
L.
Binet
and
D.
Gourier
,
J. Phys. Chem. Solids
59
,
1241
(
1998
).
2.
M.
Ogita
,
N.
Saika
,
Y.
Nakanishi
, and
Y.
Hatanaka
,
Appl. Surf. Sci.
142
,
188
(
1999
).
3.
M.
Passlack
,
E. F.
Schubert
,
W. S.
Hobson
,
M.
Hong
,
N.
Moriya
,
S. N. G.
Chu
,
K.
Konstadinidis
,
J. P.
Mannaerts
,
M. L.
Schnoes
, and
G. J.
Zydzik
,
J. Appl. Phys.
77
,
686
(
1995
).
4.
T.
Miyata
,
T.
Nakatani
, and
T.
Minami
,
Thin Solid Films
373
,
145
(
2000
).
5.
Z.
Li
,
C.
de Groot
, and
J. H.
Moodera
,
Appl. Phys. Lett.
77
,
3630
(
2000
).
6.
Y. C.
Choi
,
W. S.
Kim
,
Y. S.
Park
,
S. M.
Lee
,
D. J.
Bae
,
Y. H.
Lee
,
G. S.
Park
,
W. B.
Choi
,
N. S.
Lee
, and
J. M.
Kim
,
Adv. Mater.
12
,
746
(
2000
).
7.
R.
Rao
,
A. M.
Rao
,
B.
Xu
,
J.
Dong
,
S.
Sharma
, and
M. K.
Sunkara
,
J. Appl. Phys.
98
,
094312
(
2005
).
8.
C. H.
Liang
,
G. W.
Meng
,
G. Z.
Wang
,
Y. W.
Wang
,
L. D.
Zhang
, and
S. Y.
Zhang
,
Appl. Phys. Lett.
78
,
3202
(
2001
).
9.
S.
Sharma
and
M. K.
Sunkara
,
J. Am. Chem. Soc.
124
,
12288
(
2002
).
10.
J. S.
Kim
,
H. E.
Kim
,
H. L.
Park
, and
G. C.
Kim
,
Solid State Commun.
132
,
459
(
2004
).
11.
R.
Roy
,
V. G.
Hill
, and
E. F.
Osborn
,
J. Am. Chem. Soc.
74
,
719
(
1952
).
12.
H. G.
Kim
and
W. T.
Kim
,
J. Appl. Phys.
62
,
2000
(
1987
).
13.
T. P.
Beales
,
C. H. L.
Goodman
, and
K.
Scarrott
,
Solid State Commun.
73
,
1
(
1990
).
14.
B.
Tu
,
Q.
Cui
,
P.
Xu
,
X.
Wang
,
W.
Gao
,
C.
Wang
,
J.
Liu
, and
G.
Zou
,
J. Phys.: Condens. Matter
14
,
10627
(
2002
).
15.
D.
Machon
,
P. F.
McMillan
,
B.
Xu
, and
J.
Dong
,
Phys. Rev. B
73
,
094125
(
2006
).
16.
K. E.
Lipinska-Kalita
,
P. E.
Kalita
,
O. A.
Hemmers
, and
T.
Hartmann
,
Phys. Rev. B
77
,
094123
(
2008
).
17.
H.
Yusa
,
T.
Tsuchiya
,
N.
Sata
, and
Y.
Ohishi
,
Phys. Rev. B
77
,
064107
(
2008
).
18.
19.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rerat
,
Phys. Rev. B
74
,
195123
(
2006
).
20.
R.
Caracas
and
R. E.
Cohen
,
Phys. Rev. B
76
,
184101
(
2007
).
21.
K. E.
Lipinska-Kalita
,
B.
Chen
,
M. B.
Kruger
,
Y.
Ohki
,
J.
Murowchick
, and
E. P.
Gogol
,
Phys. Rev. B
68
,
035209
(
2003
).
22.
M.
Grimsditch
,
Phys. Rev. Lett.
52
,
2379
(
1984
).
23.
C.
Meade
,
R. J.
Hemley
, and
H. K.
Mao
,
Phys. Rev. Lett.
69
,
1387
(
1992
).
24.
H. K.
Mao
,
P. M.
Bell
,
J. W.
Shaner
, and
D. J.
Steinberg
,
J. Appl. Phys.
49
,
3276
(
1978
).
25.
H. M.
Rietveld
,
J. Appl. Crystallogr.
2
,
65
(
1969
).
27.
S. H.
Tolbert
and
A. P.
Alivisatos
,
Science
265
,
373
(
1994
).
28.
S. B.
Qadri
,
J.
Yang
,
B. R.
Ratna
,
E. F.
Skelton
, and
J. Z.
Hu
,
Appl. Phys. Lett.
69
,
2205
(
1996
).
29.
J. Z.
Jiang
,
L.
Gerward
,
D.
Frost
,
R.
Secco
,
J.
Peyronneau
, and
J. S.
Olsen
,
J. Appl. Phys.
86
,
6608
(
1999
).
30.
Y.
He
,
J. F.
Liu
,
W.
Chen
,
Y.
Wang
,
H.
Wang
,
Y. W.
Zeng
,
G. Q.
Zhang
,
L. N.
Wang
,
J.
Liu
,
T. D.
Hu
,
H.
Hahn
,
H.
Gleiter
, and
J. Z.
Jiang
,
Phys. Rev. B
72
,
212102
(
2005
).
You do not currently have access to this content.