Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 104 to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10× improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.

1.
Physics and Technology of Ion Sources
, 2nd ed., edited by
I. G.
Brown
(
Wiley-VCH
,
Weinheim, Germany
,
2004
).
2.
L. J.
Kieffer
and
G. H.
Dunn
,
Rev. Mod. Phys.
38
,
1
(
1966
).
3.
C. A.
Bower
,
K. H.
Gilchrist
,
J. R.
Piascik
,
B. R.
Stoner
,
S.
Natarajan
,
C. B.
Parker
,
S. D.
Wolter
, and
J. T.
Glass
,
Appl. Phys. Lett.
90
,
124102
(
2007
).
4.
S.
Natarajan
,
C. B.
Parker
,
J. T.
Glass
,
J. R.
Piascik
,
K. H.
Gilchrist
,
C. A.
Bower
, and
B. R.
Stoner
,
Appl. Phys. Lett.
92
,
224101
(
2008
).
5.
S.
Natarajan
,
K. H.
Gilchrist
,
J. R.
Piascik
,
C. B.
Parker
,
J. T.
Glass
, and
B. R.
Stoner
,
Appl. Phys. Lett.
94
,
044109
(
2009
).
6.
O.
Kornienko
,
P. T. A.
Reilly
,
W. B.
Whitten
, and
J. M.
Ramsey
,
Anal. Chem.
72
,
559
(
2000
).
7.
C. -W.
Baik
,
Y. -M.
Son
,
S.
Kim
 II
,
S. C.
Jun
,
J. -S.
Kim
,
J.
Hwang
,
J. -M.
Kim
,
S. -W.
Moon
,
H. J.
Kim
,
J. -K.
So
, and
G. -S.
Park
,
Microfabricated Coupled-Cavity Backward-Wave Oscillator for Terahertz Imaging
(
Inst. of Elec. and Elec. Eng. Computer Society
,
Monterey, California
,
2008
).
8.
J. B.
Cho
,
H. J.
Yoon
,
K. W.
Jung
,
S. S.
Yang
,
K. H.
Koh
, and
S.
Lee
,
Micro Mass Spectrometer Using Triode Electron Emitters with a Planar Carbon-Nanoparticle Cathode as Ion Source
(
Inst. of Elec. and Elec. Eng. Computer Society
,
Bangkok, Thailand
,
2007
).
9.
L. Y.
Chen
,
L. F.
Velásquez-García
,
X.
Wang
,
K.
Cheung
,
K.
Teo
, and
A. I.
Akinwande
, “
Design, fabrication and characterization of double-gated vertically aligned carbon nanofiber field emitter arrays
,”
Technical Digest of the 20th International Vacuum Nanoelectronics Conference
, Chicago, IL,
2007
, pp.
82
83
.
10.
W.
Zhu
,
C.
Bower
,
O.
Zhou
,
G.
Kochanski
, and
S.
Jin
,
Appl. Phys. Lett.
75
,
873
(
1999
).
11.
K. A.
Dean
and
B. R.
Chalamala
,
Appl. Phys. Lett.
76
,
375
(
2000
).
12.
C.
Dong
and
G. R.
Myneni
,
Appl. Phys. Lett.
84
,
5443
(
2004
).
13.
I. M.
Choi
and
S. W.
Woo
,
Appl. Phys. Lett.
87
,
173104
(
2005
).
14.
T. T.
King
,
S. A.
Getty
,
P. A.
Roman
,
F. A.
Herrero
,
H. H.
Jones
,
D. M.
Kahle
,
B.
Lynch
,
G.
Suarez
,
W. B.
Brinckerhoff
, and
P. R.
Mahaffy
,
Simulation of a Miniature, Low-Power Time-of-Flight Mass Spectrometer for In Situ Analysis of Planetary Atmospheres
(
SPIE
,
Orlando, Florida
,
2008
).
15.
L. F.
Velasquez-Garcia
and
A. I.
Akinwande
, A PECVD CNT—based open architecture field for portable mass spectrometry, in
21 IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2008)
,
2008
, Tucson, Arizona.
16.
J. -P.
Hauschild
,
E.
Wapelhorst
, and
J.
Müller
,
Int. J. Mass. Spectrom.
264
53
(
2007
).
17.
E.
Wapelhorst
,
J. -P.
Hauschild
, and
J.
Müller
,
Sens. Actuators, A
138
,
22
(
2007
).
18.
J.
Carter
,
A.
Cowen
,
B.
Hardy
,
R.
Mahadevan
,
M.
Stonefield
, and
S.
Wilcenski
, The PolyMUMPS Design Handbook, (Rev. 11.0).
2005
.
19.
H.
Cui
,
O.
Zhou
, and
B. R.
Stoner
,
J. Appl. Phys.
88
,
6072
(
2000
).
20.
C. A.
Bower
,
O.
Zhou
,
W.
Zhu
,
D. J.
Werder
, and
S.
Jin
,
Appl. Phys. Lett.
77
,
2767
(
2000
).
21.
S.
Natarajan
,
Electrical and Computer Engineering
(
Duke University
,
Durham, North Carolina
,
2008
), p.
199
.
22.
J. T.
Tate
and
P. T.
Smith
,
Phys. Rev.
39
,
270
(
1932
).
23.
J. B.
Lambert
,
Organic Structural Spectroscopy
, 6th ed. (
Prentice Hall
,
Upper Saddle River, New Jersey
,
1998
).
24.
Scientific Instrument Services Inc.
, SIMION V8,
2007
.
25.
J.
Kipritidis
,
M.
Fitzgerald
, and
J.
Khachan
,
J. Phys. D
40
,
5170
(
2007
).
26.
M.
Majumder
,
N.
Chopra
, and
B. J.
Hinds
,
J. Am. Chem. Soc.
127
,
9062
(
2005
).
27.
28.
D.
Rapp
and
P.
Englander-Golden
,
J. Chem. Phys.
43
,
1464
(
1965
).
29.
S. H.
Jo
,
Y.
Tu
,
Z. P.
Huang
,
D. L.
Carnahan
,
D. Z.
Wang
, and
Z. F.
Ren
,
Appl. Phys. Lett.
82
,
3520
(
2003
).
30.
S.
Fujii
,
S. -I.
Honda
,
H.
Kawai
,
K.
Ishida
,
K.
Oura
, and
M.
Katayama
,
Diamond Relat. Mater.
17
,
556
(
2008
).
31.
T. -W.
Weng
,
Y. -H.
Lai
, and
K. -Y.
Lee
,
Appl. Surf. Sci.
254
,
7755
(
2008
).
You do not currently have access to this content.