Graphene monolayers supported on oxide substrates have been demonstrated with superior charge mobility and thermal transport for potential device applications. Morphological corrugation can strongly influence the transport properties of the supported graphene. In this paper, we theoretically analyze the morphological stability of a graphene monolayer on an oxide substrate, subject to van der Waals interactions and in-plane mismatch strains. First, we define the equilibrium separation and the interfacial adhesion energy as the two key parameters that characterize the van der Waals interaction between a flat monolayer and a flat substrate surface. By a perturbation analysis, a critical compressive mismatch strain is predicted, beyond which the graphene monolayer undergoes strain-induced instability, forming corrugations with increasing amplitude and decreasing wavelength on a perfectly flat surface. When the substrate surface is not perfectly flat, the morphology of graphene depends on both the amplitude and the wavelength of surface corrugation. A transition from conformal (corrugated) to nonconformal (flat) morphology is predicted. The effects of substrate surface corrugation on the equilibrium mean thickness of the supported graphene and the interfacial adhesion energy are analyzed. Furthermore, by considering both the substrate surface corrugation and the mismatch strain, it is found that, while a tensile mismatch strain reduces the corrugation amplitude of graphene, a corrugated substrate surface promotes strain-induced instability under a compressive strain. These theoretical results suggest possible means to control the morphology of supported graphene monolayers by substrate surface patterning and strain engineering.

1.
J. C.
Meyer
,
A. K.
Geim
,
M. I.
Katsnelson
,
K. S.
Novoselov
,
T. J.
Booth
, and
S.
Roth
,
Nature (London)
446
,
60
(
2007
).
2.
A.
Fasolino
,
J. H.
Los
, and
M. I.
Katsnelson
,
Nature Mater.
6
,
858
(
2007
).
3.
R. C.
Thompson-Flagg
,
M. J.
Moura
, and
M.
Marder
,
EPL
85
,
46002
(
2009
).
4.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
5.
E.
Stolyarova
,
K. T.
Rim
,
S.
Ryu
,
J.
Maultzsch
,
P.
Kim
,
L. E.
Brus
,
T. F.
Heinz
,
M. S.
Hybertsen
, and
G. W.
Flynn
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
9209
(
2007
).
6.
V.
Geringer
,
M.
Liebmann
,
T.
Echtermeyer
,
S.
Runte
,
M.
Schmidt
,
R.
Ruchamp
,
M. C.
Lemme
, and
M.
Morgenstern
,
Phys. Rev. Lett.
102
,
076102
(
2009
).
7.
C.
Berger
,
Z. M.
Song
,
X. B.
Li
,
X. S.
Wu
,
N.
Brown
,
C.
Naud
,
D.
Mayou
,
T. B.
Li
,
J.
Hass
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
Science
312
,
1191
(
2006
).
8.
S.
Marchini
,
S.
Gunther
, and
J.
Wintterlin
,
Phys. Rev. B
76
,
075429
(
2007
).
9.
P. W.
Sutter
,
J. I.
Flege
, and
E. A.
Sutter
,
Nature Mater.
7
,
406
(
2008
).
10.
A. L. V.
de Parga
,
F.
Calleja
,
B.
Borca
,
M. C. G.
Passeggi
,
J. J.
Hinarejos
,
F.
Guinea
, and
R.
Miranda
,
Phys. Rev. Lett.
100
,
056807
(
2008
).
11.
J.
Coraux
,
A. T.
N’Diaye
,
C.
Busse
, and
T.
Michely
,
Nano Lett.
8
,
565
(
2008
).
12.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
13.
Q.
Lu
,
M.
Arroyo
, and
R.
Huang
,
J. Phys. D: Appl. Phys.
42
,
102002
(
2009
).
14.
W.
Bao
,
F.
Miao
,
Z.
Chen
,
H.
Zhang
,
W.
Jang
,
C.
Dames
, and
C. N.
Lau
,
Nat. Nanotechnol.
4
,
562
(
2009
).
15.
N.
Abedpour
,
M.
Neek-Amal
,
R.
Asgari
,
F.
Shahbazi
,
N.
Nafari
, and
M. R. R.
Tabar
,
Phys. Rev. B
76
,
195407
(
2007
).
16.
E. -A.
Kim
and
A. H. C.
Neto
,
EPL
84
,
57007
(
2008
).
17.
S.
Costamagna
,
O.
Hernandez
, and
A.
Dobry
,
Phys. Rev. B
81
,
115421
(
2010
).
18.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
19.
J. H.
Seol
,
I.
Jo
,
A. L.
Moore
,
L.
Lindsay
,
Z. H.
Aitken
,
M. T.
Pettes
,
X.
Li
,
Z.
Yao
,
R.
Huang
,
D.
Broido
,
N.
Mingo
,
R. S.
Ruoff
, and
L.
Shi
,
Science
328
,
213
(
2010
).
20.
T.
Li
and
Z.
Zhang
,
J. Phys. D: Appl. Phys.
43
,
075303
(
2010
).
21.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
,
New York
,
1992
).
22.
A.
Gupta
,
G.
Chen
,
P.
Joshi
,
S.
Tadigadapa
, and
P. C.
Eklund
,
Nano Lett.
6
,
2667
(
2006
).
23.
S.
Sonde
,
F.
Giannazzo
,
V.
Raineri
, and
E.
Rimini
,
J. Vac. Sci. Technol. B
27
,
868
(
2009
).
24.
R.
Huang
,
J. Mech. Phys. Solids
53
,
63
(
2005
).
25.
K. N.
Kudin
,
G. E.
Scuseria
, and
B. I.
Yakobson
,
Phys. Rev. B
64
,
235406
(
2001
).
26.
Q.
Lu
and
R.
Huang
,
Int. J. App. Mech.
1
,
443
(
2009
).
27.
H. Q.
Jiang
,
D. -Y.
Khang
,
J.
Song
,
Y.
Sun
,
Y.
Huang
, and
J. A.
Rogers
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
15607
(
2007
).
28.
V. B.
Shenoy
,
C. D.
Reddy
,
A.
Ramasubramaniam
, and
Y. W.
Zhang
,
Phys. Rev. Lett.
101
,
245501
(
2008
).
29.
K. V.
Bets
and
B. I.
Yakobson
,
Nano Res.
2
,
161
(
2009
).
30.
Q.
Lu
and
R.
Huang
,
Phys. Rev. B
81
,
155410
(
2010
).
31.
E. D.
Smith
,
M. O.
Robbins
, and
M.
Cieplak
,
Phys. Rev. B
54
,
8252
(
1996
).
32.
C. H.
Lui
,
L.
Liu
,
K. F.
Mak
,
G. W.
Flynn
, and
T. F.
Heinz
,
Nature (London)
462
,
339
(
2009
).
33.
J. H.
Chen
,
M.
Ishigami
,
C.
Jang
,
D. R.
Hines
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Adv. Mater.
19
,
3623
(
2007
).
34.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J. H.
Ahn
,
P.
Kim
,
J. Y.
Choi
, and
B. H.
Hong
,
Nature (London)
457
,
706
(
2009
).
You do not currently have access to this content.