The potential of sputtered Ta2O5 thin films to be used as dielectric layers in capacitive radio frequency microelectromechanical system switches is evaluated by investigating two factors of crucial importance for the performance of these devices which are the transport mechanisms and the charging effects in the dielectric layer. We find that Ta2O5 films show good electrical and dielectrical properties for the considered application in terms of a low leakage current density of 4nA/cm2 for E=1MV/cm, a high breakdown field of 4 MV/cm and a high dielectric constant of 32. For electric fields lower than 1 MV/cm the conduction mechanism is found to be variable-range hopping in the temperature range 300–400 K, while nearest-neighbor hopping is observed at higher temperatures. For fields in the range 1–4 MV/cm Poole–Frenkel becomes the dominant conduction mechanism. Current and capacitance transients used to investigate the charging effects show a decay which is well described by the stretched-exponential law, thus providing further insights on capture and emission processes.

1.
R.
Plana
,
Microwave J.
49
,
22
(
2006
).
2.
G. M.
Rebeiz
and
J. B.
Muldavin
,
IEEE MICRO
2
,
59
(
2001
).
3.
C. L.
Goldsmith
,
J.
Ehmke
,
A.
Malczewski
,
B.
Pillans
,
S.
Eshelman
,
Z.
Yao
,
J.
Brank
, and
M.
Eberly
,
IEEE MTT-S Int. Microwave Symp. Dig.
1
,
227
(
2001
).
4.
N.
Tavassolian
,
M.
Koutsoureli
,
E.
Papandreou
,
G.
Papaioannou
,
B.
Lacroix
,
Z.
Liu
, and
J.
Papapolymerou
,
IEEE Trans. Microwave Theory Tech.
57
,
3518
(
2009
).
5.
W. M.
van Spengen
,
R.
Puers
,
R.
Mertens
, and
I.
De Wolf
,
J. Micromech. Microeng.
14
,
514
(
2004
).
6.
K. -C.
Tsai
,
W. -F.
Wu
,
C. -G.
Chao
, and
C. -C.
Wu
,
J. Electrochem. Soc.
154
,
H512
(
2007
).
7.
S.
Ezhilvalavan
and
T. -Y.
Tseng
,
J. Appl. Phys.
83
,
4797
(
1998
).
8.
R. M.
Wallance
and
G.
Wilk
,
MRS Bull.
27
,
192
(
2002
).
9.
T.
Lisec
,
C.
Huth
, and
B.
Wagner
,
Proceedings of the 12th GAAs Symposium
, Amsterdam,
2004
, p.
471
.
10.
S. M.
Sze
,
J. Appl. Phys.
38
,
2951
(
1967
).
11.
E.
Atanassova
,
N.
Novkovski
,
A.
Paskaleva
, and
M.
Pecovska-Gjorgjevich
,
Solid-State Electron.
46
,
1887
(
2002
).
12.
K.
Morigaki
,
Physics of Amorphous Semiconductors
(
Imperial College
,
London, U.K.
,
1999
).
13.
A.
Yildiz
,
N.
Serin
,
T.
Serin
, and
M.
Kasap
,
Jpn. J. Appl. Phys., Part 2
48
,
111203
(
2009
).
14.
T.
Vuletić
,
B.
Korin-Hamzić
,
S.
Tomic
,
B.
Gorshunov
,
P.
Haas
,
M.
Dressel
,
J.
Akimitsu
,
T.
Sasaki
, and
T.
Nagata
,
Phys. Rev. B
67
,
184521
(
2003
).
15.
N. F.
Mott
and
E. A.
Davis
,
Electronic Properties in NonCrystalline Materials
(
Clarendon
,
Oxford, U.K.
,
1971
).
16.
A. L.
Efros
and
B. I.
Shklovskii
,
Electronic Properties of Doped Semiconductors
(
Springer
,
Berlin
,
1984
).
17.
18.
P. L.
Young
,
J. Appl. Phys.
47
,
235
(
1976
).
19.
G. S.
Oehrlein
,
J. Appl. Phys.
59
,
1587
(
1986
).
20.
A.
Paskaleva
and
E.
Atanassova
,
J. Phys. D
39
,
2950
(
2006
).
21.
U.
Zaghloul
,
G.
Papaioannou
,
F.
Coccetti
,
P.
Pons
, and
R.
Plana
,
Microelectron. Reliab.
49
,
1309
(
2009
).
22.
A.
Cerdeira
and
M.
Estrada
,
IEEE Trans. Electron Devices
47
,
2238
(
2000
).
23.
G.
Papaioannou
,
M. -N.
Exarchos
,
V.
Theonas
,
G.
Wang
, and
J.
Papapolymerou
,
IEEE Trans. Microwave Theory Tech.
53
,
3467
(
2005
).
24.
J. C.
Phillips
,
Phys. Rev. B
73
,
104206
(
2006
).
25.
J. C.
Phillips
,
Rep. Prog. Phys.
59
,
1133
(
1996
).
26.
R.
Degraeve
,
G.
Groeseneken
,
R.
Bellens
,
J. L.
Ogier
,
M.
Depas
,
P. J.
Roussel
, and
H. E.
Maes
,
IEEE Trans. Electron Devices
45
,
904
(
1998
).
27.
K. -H.
Allers
,
Microelectron. Reliab.
44
,
411
(
2004
).
You do not currently have access to this content.