In this paper the hole mobility in the amorphous small molecule material N,N-bis(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4,4-diamine (α-NPD), which is frequently used in organic light-emitting diodes, is studied. From an analysis of the temperature and layer thickness dependence of the steady-state current density in sandwich-type α-NPD-based hole-only devices, it is found that a conventional mobility model assuming a Poole–Frenkel type field dependence and neglecting the carrier density dependence is not appropriate. Consistent descriptions with equal quality are obtained within the framework of two forms of the Gaussian disorder model (GDM and CDM), within which the presence of energetic disorder is described by a Gaussian density of states and within which spatial correlations between the site energies are absent or are included, respectively. Both models contain a carrier density dependence of the mobility. Based on a comparison of the site densities as obtained from both models with the molecular density, we argue that the analysis provides evidence for the presence of correlated disorder.

1.
B. W.
D’Andrade
and
S. R.
Forrest
,
Adv. Mater.
16
,
1585
(
2004
).
2.
K.
Walzer
,
B.
Maennig
,
M.
Pfeiffer
, and
K.
Leo
,
Chem. Rev.
107
,
1233
(
2007
).
3.
J. K. F.
So
and
P.
Burrows
,
MRS Bull.
33
,
663
(
2008
).
4.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
,
Nature (London)
459
,
234
(
2009
).
5.
S. R.
Forrest
,
Nature (London)
428
,
911
(
2004
).
6.
H.
Böttger
and
V. V.
Bryksin
,
Hopping Conduction in Solids
(
Akademie-Verlag
,
Berlin
,
1985
).
7.
H.
Bässler
,
Phys. Status Solidi B
175
,
15
(
1993
).
8.
S. D.
Baranovskii
,
T.
Faber
,
F.
Hensel
, and
P.
Thomas
,
J. Phys.: Condens. Matter
9
,
2699
(
1997
);
S. D.
Baranovskii
,
H.
Cordes
,
F.
Hensel
, and
G.
Leising
,
Phys. Rev. B
62
,
7934
(
2000
);
O.
Rubel
,
S. D.
Baranovskii
,
P.
Thomas
, and
S.
Yamasaki
,
Phys. Rev. B
69
,
014206
(
2004
).
9.
V. I.
Arkhipov
,
P.
Heremans
,
E. V.
Emelianova
,
G. J.
Adriaenssens
, and
H.
Bässler
,
J. Phys.: Condens. Matter
14
,
9899
(
2002
).
10.
Y.
Roichman
and
N.
Tessler
,
Synth. Met.
135–136
,
443
(
2003
);
Y.
Roichman
,
Y.
Preezant
, and
N.
Tessler
,
Phys. Status Solidi A
201
,
1246
(
2004
).
11.
R.
Coehoorn
,
W. F.
Pasveer
,
P. A.
Bobbert
, and
M. A. J.
Michels
,
Phys. Rev. B
72
,
155206
(
2005
).
12.
I. I.
Fishchuk
,
V. I.
Arkhipov
,
A.
Kadashchuk
,
P.
Heremans
, and
H.
Bässler
,
Phys. Rev. B
76
,
045210
(
2007
).
13.
W. F.
Pasveer
,
J.
Cottaar
,
C.
Tanase
,
R.
Coehoorn
,
P. A.
Bobbert
,
P. W. M.
Blom
,
D. M.
de Leeuw
, and
M. A. J.
Michels
,
Phys. Rev. Lett.
94
,
206601
(
2005
).
14.
J.
Zhou
,
Y. C.
Zhou
,
J. M.
Zhao
,
C. Q.
Wu
,
X. M.
Ding
, and
X. Y.
Hou
,
Phys. Rev. B
75
,
153201
(
2007
).
15.
P. M.
Borsenberger
and
D. S.
Wiess
,
Organic Photoreceptors for Xerography
(
Marcel Dekker
,
New York
,
1998
).
16.
W.
Brütting
,
S.
Berleb
, and
A. G.
Mückel
,
Org. Electron.
2
,
1
(
2001
).
17.
Y. N.
Gartstein
and
E. M.
Conwell
,
Chem. Phys. Lett.
245
,
351
(
1995
).
18.
S. V.
Novikov
,
D. H.
Dunlap
,
V. M.
Kenkre
,
P. E.
Parris
, and
A. V.
Vannikov
,
Phys. Rev. Lett.
81
,
4472
(
1998
).
19.
M.
Bouhassoune
,
S. L. M.
van Mensfoort
,
P. A.
Bobbert
, and
R.
Coehoorn
,
Org. Electron.
10
,
437
(
2009
).
20.
In Ref. 19 the model descriptions of the mobility obtained was labled as “ECDM,” emphasizing the extension of the model description to include the charge carrier density dependence. However, as the underlying disorder model was not changed, we avoid here any possible confusion and refer to this work as “CDM.” Similarly we refer to the work presented in Ref. 13 as “GDM.”
21.
G.
Malliaras
,
Y.
Shen
,
D. H.
Dunlap
,
H.
Murata
, and
Z. H.
Kafafi
,
Appl. Phys. Lett.
79
,
2582
(
2001
).
22.
M. A.
Baldo
and
S. R.
Forrest
,
Phys. Rev. B
64
,
085201
(
2001
).
23.
D.
Poplavskyy
and
J.
Nelson
,
J. Appl. Phys.
93
,
341
(
2003
).
24.
T. -Y.
Chu
and
O. -K.
Song
,
J. Appl. Phys.
104
,
023711
(
2008
).
25.
A.
Ohno
,
A.
Haruyama
,
K.
Kurotaki
, and
J. -I.
Hanna
,
J. Appl. Phys.
102
,
083711
(
2007
).
26.
C.
Tanase
,
P. W. M.
Blom
, and
D. M.
de Leeuw
,
Phys. Rev. B
70
,
193202
(
2004
).
27.
Y.
Nagata
and
C.
Lennartz
,
J. Chem. Phys.
129
,
034709
(
2008
).
28.
W.
Gao
and
A.
Kahn
,
J. Appl. Phys.
94
,
360
(
2003
).
29.
S. A.
Van Slyke
,
C. H.
Chen
, and
C. W.
Tang
,
Appl. Phys. Lett.
69
,
2160
(
1996
).
30.
M. A.
Baldo
,
S.
Lamansky
,
P. E.
Burrows
,
M. E.
Thomson
, and
S. R.
Forrest
,
Appl. Phys. Lett.
75
,
4
(
1999
).
31.
R. S.
Deshpande
,
V.
Bulovic
, and
S. R.
Forrest
,
Appl. Phys. Lett.
75
,
888
(
1999
).
32.
J. -W.
Kang
,
D. -S.
Lee
,
H. -D.
Park
,
J. W.
Kim
,
W. -I.
Jeong
,
Y. -S.
Park
,
S. -H.
Lee
,
K.
Gob
,
J. -S.
Lee
, and
J. -J.
Kim
,
Org. Electron.
9
,
452
(
2008
).
33.
K. S.
Son
,
M.
Yahiro
,
T.
Imai
,
H.
Yoshizaki
, and
C.
Adachi
,
Chem. Mater.
20
,
4439
(
2008
).
34.
Q.
Wang
,
J.
Ding
,
Z.
Zhang
,
D.
Ma
,
Y.
Cheng
,
L.
Wang
, and
F.
Wang
,
J. Appl. Phys.
105
,
076101
(
2009
).
35.
S.
Lee
,
C. -H.
Chung
, and
S. M.
Cho
,
Synth. Met.
126
,
269
(
2002
).
36.
Y.
Kijima
,
A.
Nobutoshi
, and
S.
Tamura
,
Jpn. J. Appl. Phys., Part 1
38
,
5274
(
1999
).
37.
T.
Tsuji
,
S.
Naka
,
H.
Okada
, and
H.
Onnagawa
,
Appl. Phys. Lett.
81
,
3329
(
2002
).
38.
K. O.
Cheon
and
J.
Shinar
,
Appl. Phys. Lett.
81
,
1738
(
2002
).
39.
M.
Nakahara
,
M.
Minagawa
,
T.
Oyamada
,
T.
Tadokoro
,
H.
Sasabe
, and
C.
Adachi
,
Jpn. J. Appl. Phys., Part 2
46
,
L636
(
2007
).
40.
R.
Meerheim
,
S.
Schoolz
,
S.
Olthof
,
G.
Schwartz
,
S.
Reineke
,
K.
Waltzer
, and
K.
Leo
,
J. Appl. Phys.
104
,
014510
(
2008
).
41.
T.
Matsushima
and
C.
Adachi
,
Thin Solid Films
517
,
874
(
2008
).
42.
T.
Matsushima
,
Y.
Kinoshita
, and
H.
Murata
,
Appl. Phys. Lett.
91
,
253504
(
2007
).
43.
P. M.
Borsenberger
,
E. H.
Mangin
, and
J.
Shi
,
Physica B
217
,
212
(
1996
).
44.
Z.
Deng
,
S. T.
Lee
,
D. P.
Webb
,
Y. C.
Chan
, and
W. A.
Gambling
,
Synth. Met.
107
,
107
(
1999
).
45.
S.
Naka
,
H.
Okada
,
H.
Onnagawa
,
Y.
Yamaguchi
, and
T.
Tsutsui
,
Synth. Met.
111–112
,
331
(
2000
).
46.
W.
Weise
,
T.
Keith
,
N.
von Malm
, and
H.
von Seggern
,
Phys. Rev. B
72
,
045202
(
2005
).
47.
A.
Fleissner
,
H.
Schmidt
,
C.
Melzer
, and
H.
von Seggern
,
Appl. Phys. Lett.
91
,
242103
(
2007
).
48.
K. L.
Tong
,
S. W.
Tsang
,
K. K.
Tsung
,
S. C.
Tse
, and
S. K.
So
,
J. Appl. Phys.
102
,
093705
(
2007
).
49.
C. -Y.
Lin
,
Y. -M.
Chen
,
H. -F.
Chen
,
F. -C.
Fang
,
Y. -C.
Lin
,
W. -Y.
Hung
,
K. T.
Wong
,
R. C.
Kwong
, and
S. C.
Xia
,
Org. Electron.
10
,
181
(
2009
).
50.
N. D.
Nguyen
,
M.
Schmeits
, and
H. P.
Loebl
,
Phys. Rev. B
75
,
075307
(
2007
).
51.
S. L. M.
van Mensfoort
,
S. I. E.
Vulto
,
R. A. J.
Janssen
, and
R.
Coehoorn
,
Phys. Rev. B
78
,
085208
(
2008
).
52.
R. J.
de Vries
,
S. L. M.
van Mensfoort
,
V.
Shabro
,
R. A. J.
Janssen
, and
R.
Coehoorn
,
Appl. Phys. Lett.
1094
,
163308
(
2009
).
53.
Y. -J.
Cheng
,
M. S.
Liu
,
Y.
Zhang
,
Y.
Niu
,
F.
Huang
,
J. -W.
Ka
,
H. -L.
Yip
,
Y.
Tian
, and
A. K.-Y.
Jen
,
Chem. Mater.
20
,
413
(
2008
).
54.
A.
Wan
,
J.
Hwang
,
F.
Amy
, and
A.
Kahn
,
Org. Electron.
6
,
47
(
2005
).
55.
S. L. M.
van Mensfoort
and
R.
Coehoorn
,
Phys. Rev. Lett.
100
,
086802
(
2008
).
56.
N.
Koch
,
A.
Kahn
,
J.
Ghijsen
,
J. -J.
Pireaux
,
J.
Schwartz
,
R. L.
Johnson
, and
A.
Elschner
,
Appl. Phys. Lett.
82
,
70
(
2003
).
57.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
58.
A.
Kahn
,
N.
Koch
, and
W.
Gao
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2529
(
2003
).
59.
C.
Tengstedt
,
W.
Osikowicz
,
W.
Salaneck
,
I. D.
Parker
,
C. -H.
Hsu
, and
M.
Fahlman
,
Appl. Phys. Lett.
88
,
053502
(
2006
).
60.
E. H.
Evans
,
J. A.
Day
,
C. D.
Palmer
,
C. M. M.
Smith
, and
M. M.
Clare
,
J. Anal. At. Spectrom.
24
,
711
(
2009
).
61.
W. D.
Gill
,
J. Appl. Phys.
43
,
5033
(
1972
).
62.
S. L. M.
van Mensfoort
and
R.
Coehoorn
,
Phys. Rev. B
78
,
085207
(
2008
).
63.
For a more elaborate description of the calculation of the error we refer to Ref. 52.
64.
S. J.
Martin
,
J. M.
Lupton
,
I. D. W.
Samuel
, and
A. B.
Walker
,
J. Phys.: Condens. Matter
14
,
9925
(
2002
).
65.
N. I.
Craciun
,
J.
Wildeman
, and
P. W. M.
Blom
,
Phys. Rev. Lett.
100
,
056601
(
2008
).
66.
S. V.
Rakhmanova
and
E. M.
Conwell
,
Appl. Phys. Lett.
76
,
3822
(
2000
).
67.
Z. G.
Yu
,
D. L.
Smith
,
A.
Saxena
,
R. L.
Martin
, and
A. R.
Bishop
,
Phys. Rev. Lett.
84
,
721
(
2000
).
68.
S. V.
Novikov
and
A. V.
Vannikov
,
J. Phys. Chem.
99
,
14573
(
1995
).
69.
P. R.
Emtage
and
J. J.
O’Dwyer
,
Phys. Rev. Lett.
16
,
356
(
1966
).
70.
R. Q.
Zhang
,
C. S.
Lee
, and
S. T.
Lee
,
J. Chem. Phys.
112
,
8614
(
2000
).
71.
J. J.
Kwiatkowski
,
J.
Nelson
,
H.
Li
,
J. L.
Bredas
,
W.
Wenzel
, and
C.
Lennartz
,
Phys. Chem. Chem. Phys.
10
,
1852
(
2008
).
72.
A.
Miller
and
E.
Abrahams
,
Phys. Rev.
120
,
745
(
1960
).
73.
S. D.
Baranovskii
,
I. P.
Zvyagin
,
H.
Cordes
,
S.
Yamasaki
, and
P.
Thomas
,
Phys. Status Solidi B
230
,
281
(
2002
).
74.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J. -L.
Bredas
,
Chem. Rev.
107
,
926
(
2007
).
You do not currently have access to this content.