A 20 band sp3d5s spin-orbit-coupled, semiempirical, atomistic tight-binding model is used with a semiclassical, ballistic field-effect-transistor model, to theoretically examine the bandstructure carrier velocity and ballistic current in silicon nanowire (NW) transistors. Infinitely long, uniform, cylindrical, and rectangular NWs, of cross sectional diameters/sides ranging from 3–12 nm are considered. For a comprehensive analysis, n-type and p-type metal-oxide semiconductor (NMOS and PMOS) NWs in [100], [110], and [111] transport orientations are examined. In general, physical cross section reduction increases velocities, either by lifting the heavy mass valleys or significantly changing the curvature of the bands. The carrier velocities of PMOS [110] and [111] NWs are a strong function of diameter, with the narrower D=3nm wires having twice the velocities of the D=12nm NWs. The velocity in the rest of the NW categories shows only minor diameter dependence. This behavior is explained through features in the electronic structure of the silicon host material. The ballistic current, on the other hand, shows the least sensitivity with cross section in the cases where the velocity has large variations. Since the carrier velocity is a measure of the effective mass and reflects on the channel mobility, these results can provide insight into the design of NW devices with enhanced performance and performance tolerant to structure geometry variations. In the case of ballistic transport in high performance devices, the [110] NWs are the ones with both high NMOS and PMOS performance as well as low on-current variations with cross section geometry variations.

1.
ITRS Public Home Page, http://www.itrs.net/reports.html.
2.
N.
Singh
,
F. Y.
Lim
,
W. W.
Fang
,
S. C.
Rustagi
,
L. K.
Bera
,
A.
Agarwal
,
C. H.
Tung
,
K. M.
Hoe
,
S. R.
Omampuliyur
,
D.
Tripathi
,
A. O.
Adeyeye
,
G. Q.
Lo
,
N.
Balasubramanian
, and
D. L.
Kwong
,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
548
.
3.
K. H.
Cho
,
Y. C.
Jung
,
B. H.
Hong
,
S. W.
Hwang
,
J. H.
Oh
,
D.
Ahn
,
S. D.
Suk
,
K. H.
Yeo
,
D. -W.
Kim
,
D.
Park
, and
W. -S.
Lee
,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
1
4
.
4.
K. H.
Cho
,
K. H.
Yeo
,
Y. Y.
Yeoh
,
S. D.
Suk
,
M.
Li
,
J. M.
Lee
,
M. -S.
Kim
,
D. -W.
Kim
,
D.
Park
,
B. H.
Hong
,
Y. C.
Jung
, and
S. W.
Hwang
,
Appl. Phys. Lett.
92
,
052102
(
2008
).
5.
M.
Kobayashi
and
T.
Hiramoto
,
J. Appl. Phys.
103
,
053709
(
2008
).
6.
J.
Xiang
,
W.
Lu
,
Y.
Hu
,
Y.
Wu
,
H.
Yan
, and
C. M.
Lieber
,
Nature (London)
441
,
489
(
2006
).
7.
K. H.
Yeo
,
S. D.
Suk
,
M.
Li
,
Y. -Y.
Yeoh
,
K. H.
Cho
,
K. -H.
Hong
,
S. K.
Yun
,
M. S.
Lee
,
N.
Cho
,
K.
Lee
,
D.
Hwang
,
B.
Park
,
D. -W.
Kim
,
D.
Park
, and
B. -I.
Ryu
,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
717
.
8.
S.
Huang
and
Y.
Chen
,
Nano Lett.
8
,
2829
(
2008
).
9.
C. B.
Winkelmann
,
I.
Ionica
,
X.
Chevalier
,
G.
Royal
,
C.
Bucher
, and
V.
Bouchiat
,
Nano Lett.
7
,
1454
(
2007
).
10.
M.
Law
,
L. E.
Greene
,
J. C.
Johnson
,
R.
Saykally
, and
P.
Yang
,
Nature Mater.
4
,
455
(
2005
).
11.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J. -K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature (London)
451
,
168
(
2008
).
12.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature (London)
451
,
163
(
2008
).
13.
N.
Neophytou
,
A.
Paul
,
M.
Lundstrom
, and
G.
Klimeck
,
IEEE Trans. Electron Devices
55
,
1286
(
2008
).
14.
N.
Neophytou
,
A.
Paul
, and
G.
Klimeck
,
IEEE Trans. NanoTechnol.
7
,
710
(
2008
).
15.
N.
Neophytou
and
G.
Klimeck
,
Nano Lett.
9
,
623
(
2009
).
16.
M.
Luisier
,
A.
Schenk
, and
W.
Fichtner
,
Proceedings of the 12th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2007)
(
Springer
,
Wien, New York
,
2007
), pp.
221
224
.
17.
M.
Luisier
and
G.
Klimeck
,
Proceedings of the 13th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2008)
, 9–11 September 2008 (
IEEE
,
Piscataway, NJ
,
2008
), pp.
17
20
.
18.
G. C.
Liang
,
J.
Xiang
,
N.
Kharche
,
G.
Klimeck
,
C. M.
Lieber
, and
M.
Lundstrom
,
Nano Lett.
7
,
642
(
2007
).
19.
Y.
Liu
,
N.
Neophytou
,
T.
Low
,
G.
Klimeck
, and
M. S.
Lundstrom
,
IEEE Trans. Electron Devices
55
,
866
(
2008
).
20.
M. V.
Fischetti
,
Z.
Ren
,
P. M.
Solomon
,
M.
Yang
, and
K.
Rim
,
J. Appl. Phys.
94
,
1079
(
2003
).
21.
M.
Yang
,
V. W. C.
Chan
,
K. K.
Chan
,
L.
Shi
,
D. M.
Fried
,
J. H.
Stathis
,
A. I.
Chou
,
E.
Gusev
,
J. A.
Ott
,
L. E.
Burns
,
M. V.
Fischetti
, and
M.
Ieong
,
IEEE Trans. Electron Devices
53
,
965
(
2006
).
22.
E. X.
Wang
,
P.
Matagne
,
L.
Shifren
,
B.
Obradovic
,
R.
Kotlyar
,
S.
Cea
, and
M.
Stettler
,
IEEE Trans. Electron Deices
53
,
8
(
2006
).
23.
E.
Gnani
,
A.
Gnudi
,
S.
Regianni
, and
G.
Baccarani
,
IEEE Trans. Electron Devices
57
,
336
(
2010
).
24.
S.
Jin
,
M. V.
Fischetti
, and
T. -W.
Tang
,
J. Appl. Phys.
102
,
083715
(
2007
).
25.
R.
Kotlyar
,
B.
Obradovic
,
P.
Matagne
,
M.
Stettler
, and
M. D.
Giles
,
Appl. Phys. Lett.
84
,
5270
(
2004
).
26.
R.
Kim
and
M.
Lundstrom
,
IEEE Trans. Electron Devices
56
,
132
(
2009
).
27.
S. E.
Thompson
,
M.
Armstrong
,
C.
Auth
,
M.
Alavi
,
M.
Buehler
,
R.
Chau
,
S.
Cea
,
T.
Ghani
,
G.
Glass
,
T.
Hoffman
,
C. -H.
Jan
,
C.
Kenyon
,
J.
Klaus
,
K.
Kuhn
,
M.
Zhiyong
,
B.
Mcintyre
,
K.
Mistry
,
A.
Murthy
,
B.
Obradovic
,
R.
Nagisetty
,
N.
Phi
,
S.
Sivakumar
,
R.
Shaheed
,
L.
Shifren
,
B.
Tufts
,
S.
Tyagi
,
M.
Bohr
, and
Y.
El-Mansy
,
IEEE Trans. Electron Devices
51
,
1790
(
2004
).
28.
M.
Saitoh
,
S.
Kobayashi
, and
K.
Uchida
,
Tech. Dig. - Int. Electron Devices Meet.
2007
,
711
.
29.
T. B.
Boykin
,
G.
Klimeck
, and
F.
Oyafuso
,
Phys. Rev. B
69
,
115201
(
2004
).
30.
G.
Klimeck
,
F.
Oyafuso
,
T. B.
Boykin
,
R. C.
Bowen
, and
P.
von Allmen
,
Comput. Model. Eng. Sci.
3
,
601
(
2002
).
31.
G.
Klimeck
,
S.
Ahmed
,
H.
Bae
,
N.
Kharche
,
S.
Clark
,
B.
Haley
,
S.
Lee
,
M.
Naumov
,
H.
Ryu
,
F.
Saied
,
M.
Prada
,
M.
Korkusinski
, and
T. B.
Boykin
,
IEEE Trans. Electron Devices
54
,
2079
(
2007
).
32.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
33.
M. S.
Lundstrom
and
J.
Guo
,
Nanoscale transistors: Device Physics, Modeling and Simulation
(
Springer
,
New York
,
2006
).
34.
A.
Rahman
,
J.
Guo
,
S.
Datta
, and
M.
Lundstrom
,
IEEE Trans. Electron Devices
50
,
1853
(
2003
).
35.
M.
Luisier
and
G.
Klimeck
,
Proceedings of the 8th IEEE Conference on Nanotechnology
, 18–21 August 2008 (
IEEE
,
Piscataway, NJ
,
2008
), pp.
18
21
.
36.
M.
Luisier
,
N.
Neophytou
,
N.
Kharche
, and
G.
Klimeck
Tech. Dig. - Int. Electron Devices Meet.
2008
,
887
891
.
37.
R. C.
Bowen
,
G.
Klimeck
,
R.
Lake
,
W. R.
Frensley
, and
T.
Moise
,
J. Appl. Phys.
81
,
3207
(
1997
).
38.
J.
Wang
, Ph.D. thesis,
Purdue University
,
2005
.
39.
N.
Kharche
,
M.
Prada
,
T. B.
Boykin
, and
G.
Klimeck
,
Appl. Phys. Lett.
90
,
092109
(
2007
).
40.
R.
Rahman
,
C. J.
Wellard
,
F. R.
Bradbury
,
M.
Prada
,
J. H.
Cole
,
G.
Klimeck
, and
L. C. L.
Hollenberg
,
Phys. Rev. Lett.
99
,
036403
(
2007
).
41.
S.
Lee
,
F.
Oyafuso
,
P.
Von Allmen
, and
G.
Klimeck
,
Phys. Rev. B
69
,
045316
(
2004
).
42.
A.
Paul
,
S.
Mehrotra
,
G.
Klimeck
, and
M.
Luisier
,
Proceedings of International Workshop on Computer Electronics (IWCE)
, Beijing China, May 2009, (
IEEE
,
Piscataway, NJ
,
2009
), pp.
177
180
.
43.
L.
Chang
,
M.
Ieong
, and
M.
Yang
,
IEEE Trans. Electron Devices
51
,
1621
(
2004
).
44.
M.
Luisier
,
A.
Schenk
, and
W.
Fichtner
,
Appl. Phys. Lett.
90
,
102103
,
2007
.
45.
J.
Wang
,
E.
Polizzi
,
A.
Ghosh
,
S.
Datta
, and
M.
Lundstrom
,
Appl. Phys. Lett.
87
,
043101
(
2005
).
46.
N.
Seoane
,
A.
Martinez
,
A. R.
Brown
,
J. R.
Barker
, and
A.
Asenov
,
IEEE Trans. Electron Devices
56
,
1388
(
2009
).
47.
M.
Lenzi
,
A.
Gnudi
,
S.
Reggiani
,
E.
Gnani
,
M.
Rudan
, and
G.
Baccarani
,
J. Comput. Electron.
7
,
355
(
2008
).
48.
S.
Poli
,
M. G.
Pala
,
T.
Poiroux
,
S.
Deleonibus
, and
G.
Baccarani
,
IEEE Trans. Electron Devices
55
,
11
(
2008
).
49.
nanoHub Bandstructure lab on nanoHUB.org (https://www.nanohub.org/tools/bandstrlab/).
You do not currently have access to this content.