Direct silicon bonded (DSB) substrates with (110)/(100) hybrid orientation technology are attracting considerable attention as a promising technology for high performance bulk complementary metal-oxide semiconductor technology. We have investigated the structure and the gettering efficiency of the (110)/(100) interface parallelling each 110 direction (DSB interface) by molecular dynamics (MD) and first-principles calculation. In MD calculations, initial calculation cells of 15 atomic-configurations with coincidence-site lattices were prepared. It was found that (i) the calculated DSB interface was stable independent of the initial atomic-configurations and (ii) the interfacial structures were essentially the same among the calculated models. Moreover, the calculated interfacial structure corresponds to the reported TEM observation. The first-principles calculation showed that Si atoms in the DSB interface formed covalent bonding. The dangling bonds in Si (110) and (100) surfaces disappeared due to restructuring in the DSB interface. Furthermore, the DSB interface, which exists just below the device active region, was found to be an efficient gettering site for Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Hf atoms.

1.
M.
Yang
,
W. C.
Chan
,
K. K.
Chan
,
L.
Shi
,
D. M.
Fried
,
J. H.
Stathis
,
A. I.
Chou
,
E.
Gusev
,
J. A.
Ott
,
L. E.
Burns
,
M. V.
Fischetti
, and
M.
Ieong
IEEE Trans. Electron Devices
53
,
965
(
2006
).
2.
E.
Toyoda
,
A.
Sakai
,
O.
Nakatsuka
,
H.
Isogai
,
T.
Senda
,
K.
Izunome
,
M.
Ogawa
, and
S.
Zaima
,
Thin Solid Films
517
,
323
(
2008
).
3.
U.
Gösele
,
H.
Stenzel
,
T.
Martini
,
J.
Steinkirchner
,
D.
Conrad
, and
K.
Scheerschmidt
,
Appl. Phys. Lett.
67
,
3614
(
1995
).
4.
D. A.
Litton
and
S. H.
Garofalini
,
J. Appl. Phys.
89
,
6013
(
2001
).
5.
O.
Lichtenberger
and
J.
Woltersdorf
,
Mater. Chem. Phys.
44
,
222
(
1996
).
6.
K.
Scheerschmidt
and
V.
Kuhlmann
,
Int. J. Mater. Res.
98
,
11
(
2007
).
7.
K.
Scheerschmidt
and
V.
Kuhlmann
,
Interface Sci.
12
,
157
(
2004
).
8.
T.
Wilhelm
,
V.
Kuhlmann
, and
K.
Scheerschmidt
,
Phys. Status Solidi C
4
,
3115
(
2007
).
9.
A.
Ciucivara
,
B. R.
Sahu
,
S.
Joshi
,
S. K.
Banerjee
, and
L.
Kleinman
,
Phys. Rev. B
75
,
113309
(
2007
).
10.
T.
Aoki
,
H.
Kariyazaki
,
K.
Sueoka
,
E.
Toyoda
, and
K.
Izunome
,
Jpn. J. Appl. Phys.
49
,
035501
(
2010
).
11.
Z.
Jian
,
Z.
Kaiming
, and
X.
Xide
,
Phys. Rev. B
41
,
12915
(
1990
).
12.
The Materials explorer code is available from Fujitsu Ltd.
13.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
14.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
15.
Z.
Wu
and
R. E.
Cohen
,
Phys. Rev. B
73
,
235116
(
2006
).
16.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
The CASTEP code is available from Accelrys Software Inc.
18.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
19.
T.
Fischer
and
J.
Almlof
,
J. Phys. Chem.
96
,
9768
(
1992
).
20.
H.
Monkhorst
and
J.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
21.
D.
Conrad
,
K.
Scheerschmidt
, and
U.
Gösele
,
Appl. Phys. A: Mater. Sci. Process.
62
,
7
(
1996
).
22.
K.
Sueoka
,
K.
Kamimura
, and
S.
Shiba
,
Advances in Materials Science and Engineering
2009
,
309209
.
23.
K.
Matsukawa
,
K.
Shirai
,
H.
Yamaguchi
, and
H.
Katayama-Yoshida
,
Physica B
401–402
,
151
(
2007
).
24.
H.
Yamaguchi
,
K.
Shirai
, and
H.
Katayama-Yoshida
,
J. Comput. Theor. Nanosci.
6
,
2619
(
2009
).
25.
U.
Wahl
,
A.
Vantomme
,
G.
Langouche
, and
J. G.
Correia
,
Phys. Rev. Lett.
84
,
1495
(
2000
).
26.
U.
Wahl
,
A.
Vantomme
,
G.
Langouche
,
J. P.
Araújo
,
L.
Peralta
, and
J. G.
Correia
,
Appl. Phys. Lett.
77
,
2142
(
2000
).
27.
K.
Matsukawa
,
N.
Hattori
,
S.
Maegawa
,
K.
Shirai
, and
H.
Katayama-Yoshida
,
Solid State Phenom.
108–109
,
115
(
2005
).
28.
H.
Feichtinger
,
Acta Phys. Austriaca
51
,
161
(
1979
).
29.
H.
Hieslmair
,
A.
Istratov
,
C.
Flink
,
S.
McHugo
, and
E.
Weber
,
Physica B
273–274
,
441
(
1999
).
30.
H.
Kikuchi
,
M.
Kitakata
,
F.
Toyokawa
, and
M.
Mikami
,
Appl. Phys. Lett.
54
,
463
(
1989
).
You do not currently have access to this content.