The thermal boundary conductances between c-axis oriented highly ordered pyrolytic graphite and several metals have been measured in the temperature range 87–300 K and are found to be similar to those of metal–diamond interfaces. The values obtained are indicative of the thermal interface conductance between metals and the sidewalls of multiwall carbon nanotubes (CNTs) and, therefore, have relevance for the accurate characterization of the thermal properties of CNTs, graphene, and the design and performance of composite materials and electronic devices based on these structures. A modified diffuse mismatch model is used to interpret the data and extract the phonon transmissivity at the interface. The results indicate that metal–graphite adhesion forces and interfacial mixing effects play important roles in determining the boundary conductance.

2.
Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications (Topics in Applied Physics)
, 1st ed., edited by
A.
Jorio
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
(
Springer
,
New York
,
2008
).
3.
A. K.
Geim
and
K. S.
Novoselov
,
Nature Mater.
6
,
183
(
2007
).
4.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
5.
S. T.
Huxtable
,
D. G.
Cahill
,
S.
Shenogin
,
L.
Xue
,
R.
Ozisik
,
P.
Barone
,
M.
Usrey
,
M. S.
Strano
,
G.
Siddons
,
M.
Shim
, and
P.
Keblinski
,
Nature Mater.
2
,
731
(
2003
).
6.
M. A.
Panzer
,
G.
Zhang
,
D.
Mann
,
X.
Hu
,
E.
Pop
,
H.
Dai
, and
K. E.
Goodson
,
ASME J. Heat Transfer
130
,
052401
(
2008
).
7.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
,
Phys. Rev. Lett.
87
,
215502
(
2001
).
8.
R.
Prasher
,
Phys. Rev. B
77
,
075424
(
2008
).
9.
M.
Fujii
,
X.
Zhang
,
H.
Xie
,
H.
Ago
,
K.
Takahashi
,
T.
Ikuta
,
H.
Abe
, and
T.
Shimizu
,
Phys. Rev. Lett.
95
,
065502
(
2005
).
10.
C.
Yu
,
L.
Shi
,
Z.
Yao
,
D.
Li
, and
A.
Majumdar
,
Nano Lett.
5
,
1842
(
2005
).
11.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
12.
Z.
Chen
,
W.
Jang
,
W.
Bao
,
C. N.
Lau
, and
C.
Dames
,
Appl. Phys. Lett.
95
,
161910
(
2009
).
13.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
14.
H. -K.
Lyeo
and
D. G.
Cahill
,
Phys. Rev. B
73
,
144301
(
2006
).
15.
E.
Pop
,
D. A.
Mann
,
K. E.
Goodson
, and
H.
Dai
,
J. Appl. Phys.
101
,
093710
(
2007
).
16.
H.
Maune
,
H. -Y.
Chiu
, and
M.
Bockrath
,
Appl. Phys. Lett.
89
,
013109
(
2006
).
17.
B. T.
Kelly
,
Physics of Graphite
, 1st ed. (
Applied Science Publishers
,
London
,
1981
).
18.
19.
Y. J.
Naidich
,
Progress in Surface and Membrane Science
(
Academic
,
New York
,
1981
).
20.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
21.
G.
Chen
,
Nanoscale Energy Transport and Conversion
(
Oxford University Press
,
New York
,
2005
), pp.
180
185
.
22.
G.
Chen
and
T.
Zeng
,
Nanoscale Microscale Thermophys. Eng.
5
,
71
(
2001
).
23.
C.
Dames
and
G.
Chen
,
J. Appl. Phys.
95
,
682
(
2004
).
24.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
New York
,
2005
).
25.
J. C.
Duda
,
J. L.
Smoyer
,
P. M.
Norris
, and
P. E.
Hopkins
,
Appl. Phys. Lett.
95
,
031912
(
2009
).
26.
D. A.
Young
and
H. J.
Maris
,
Phys. Rev. B
40
,
3685
(
1989
).
27.
B. C.
Gundrum
,
D. G.
Cahill
, and
R. S.
Averback
,
Phys. Rev. B
72
,
245426
(
2005
).
You do not currently have access to this content.