Nanostructured Au films were deposited on Si(111) by room-temperature sputtering. By the atomic force microscopy technique we studied the evolution of the Au film morphology as a function of the film thickness h and annealing time t at 873 K. By the study of the evolution of the mean vertical and horizontal sizes of the islands forming the film and of their fraction of covered area as a function of h from 1.7×1017 to 1.0×1018Au/cm2 we identified four different growth stages such as: (1) 1.7×1017h3.0×1017Au/cm2, nucleation of nanometric three-dimensional (3D) hemispherical Au clusters; (2) 3.0×1017<h5.2×1017Au/cm2, lateral growth of the Au clusters; (3) 5.2×1017<h7.7×1017Au/cm2, coalescence of the Au clusters; (4) 7.7×1017<h1.0×1018Au/cm2, vertical growth of the coalesced Au clusters. The application of the dynamic scaling theory of growing interfaces allowed us to calculate the dynamic scaling exponent z=3.8±0.3, the dynamic growth exponent β=0.38±0.03, the roughness exponent α=1.4±0.1 and the Avrami exponent m=0.79±0.02. Finally, the study of the evolution of the mean Au clusters size as a function of annealing time at 873 K allowed us to identify the thermal-induced self-organization mechanism in a surface diffusion limited ripening of 3D structures and also the surface diffusion coefficient of Au on Si(111) at 873 K was estimated in (8.2×1016)±(3×1017)m2/s.

1.
M.
Ohring
,
The Materials Science of Thin Films
(
Academic
,
New York
,
1992
).
2.
D. L.
Smith
,
Thin Film Deposition
(
McGraw-Hill
,
New York
,
1995
).
3.
W. G.
Schmidt
,
F.
Bechstedt
, and
G. P.
Srivastava
,
Surf. Sci. Rep.
25
,
141
(
1996
).
4.
C. T.
Campbell
,
Surf. Sci. Rep.
27
,
1
(
1997
).
5.
A. -L.
Barabasi
and
H. E.
Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
Cambridge
,
1995
).
6.
M.
Kardar
,
G.
Parisi
, and
Y. -C.
Zhang
,
Phys. Rev. Lett.
56
,
889
(
1986
).
7.
M.
Siegert
and
M.
Plischke
,
Phys. Rev. Lett.
73
,
1517
(
1994
).
8.
P.
Moriarty
,
Rep. Prog. Phys.
64
,
297
(
2001
).
9.
A. K.
Green
and
E.
Bauer
,
J. Appl. Phys.
52
,
5098
(
1981
).
10.
13.
C.
Calandra
,
O.
Bisi
, and
G.
Ottaviani
,
Surf. Sci. Rep.
4
,
271
(
1985
).
14.
L.
Hultman
,
A.
Robertsson
,
H. T. G.
Hentzell
,
I.
Engström
, and
P. A.
Psaras
,
J. Appl. Phys.
62
,
3647
(
1987
).
15.
L. E.
Berman
,
B. W.
Batterman
, and
J. M.
Blakely
,
Phys. Rev. B
38
,
5397
(
1988
).
16.
W.
Swiech
,
E.
Bauer
, and
M.
Mundschau
,
Surf. Sci.
253
,
283
(
1991
).
17.
H.
Yasunaga
and
A.
Natori
,
Surf. Sci. Rep.
15
,
205
(
1992
).
18.
H.
You
,
R. P.
Chiarello
,
H. K.
Kim
, and
K. G.
Vandervoort
,
Phys. Rev. Lett.
70
,
2900
(
1993
).
19.
K.
Fuchigami
and
A.
Ichimiya
,
Surf. Sci.
357–358
,
937
(
1996
).
20.
Y.
Homma
,
P.
Finnie
, and
T.
Ogino
,
Appl. Phys. Lett.
74
,
815
(
1999
).
21.
Y.
Homma
,
P.
Finnie
,
T.
Ogino
,
H.
Noda
, and
T.
Urisu
,
J. Appl. Phys.
86
,
3083
(
1999
).
22.
A. V.
Latyshev
,
D. A.
Nasimov
,
V. N.
Savenko
, and
A. L.
Aseev
,
Thin Solid Films
367
,
142
(
2000
).
23.
S.
Hazra
,
S.
Pal
,
S.
Kundu
, and
M. K.
Sanyal
,
Appl. Surf. Sci.
182
,
244
(
2001
).
24.
A.
Kirakosian
,
J. -L.
Lin
,
D. Y.
Petrovykh
,
J. N.
Crain
, and
F. J.
Himpsel
,
J. Appl. Phys.
90
,
3286
(
2001
).
25.
B.
Ressel
,
K. C.
Prince
,
S.
Heun
, and
Y.
Homma
,
J. Appl. Phys.
93
,
3886
(
2003
).
26.
H.
Hibino
and
Y.
Watanabe
,
Surf. Sci.
588
,
L233
(
2005
).
27.
M.
Law
,
J.
Goldberger
, and
P.
Yang
,
Annu. Rev. Mater. Res.
34
,
83
(
2004
).
28.
J. B.
Hannon
,
S.
Kodambaka
,
F. M.
Ross
, and
R. M.
Tromp
,
Nature (London)
440
,
69
(
2006
).
30.
R.
Wiesendanger
,
Scanning Probe Microscopy and Spectroscopy
(
Cambridge University Press
,
Cambridge
,
1994
).
31.
D.
Sarid
,
Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces
(
Oxford University Press
,
Oxford
,
1994
).
32.
C. G.
Granqvist
and
R. A.
Buhrman
,
J. Appl. Phys.
47
,
2200
(
1976
).
33.
M.
Zinke-Allmang
,
L. C.
Feldman
, and
M. H.
Grabov
,
Surf. Sci. Rep.
16
,
377
(
1992
).
34.
F.
Family
and
T.
Vicsek
,
Dynamics of Fractals Surfaces
(
World Scientific
,
Singapore
,
1991
).
35.
F.
Family
and
T.
Vicsek
,
J. Phys. A
18
,
L75
(
1985
).
36.
J.
Krim
and
J. O.
Indekeu
,
Phys. Rev. E
48
,
1576
(
1993
).
37.
J. M.
Kim
and
J. M.
Kosterlitz
,
Phys. Rev. Lett.
62
,
2289
(
1989
).
38.
B. M.
Forrest
and
L. -H.
Tang
,
Phys. Rev. Lett.
64
,
1405
(
1990
).
39.
J.
Villain
,
J. Phys. I (France)
1
,
19
(
1991
).
40.
D. E.
Wolf
and
J.
Villain
,
Europhys. Lett.
13
,
389
(
1990
).
41.
Z. -W.
Lai
and
S.
Das Sarma
,
Phys. Rev. Lett.
66
,
2348
(
1991
).
42.
L. -H.
Tang
and
T.
Nattermann
,
Phys. Rev. Lett.
66
,
2899
(
1991
).
43.
J. A.
Venables
,
G. D. T.
Spiller
, and
M.
Hanbucken
,
Rep. Prog. Phys.
47
,
399
(
1984
).
44.
C. R.
Stoldt
,
C. J.
Jenks
,
P. A.
Thiel
,
A. M.
Cadilhe
, and
J. W.
Evans
,
J. Chem. Phys.
111
,
5157
(
1999
).
45.
M.
Avrami
,
J. Chem. Phys.
7
,
1103
(
1939
).
46.
W. A.
Johnson
and
R. F.
Mehl
,
Trans. AIME
135
,
416
(
1939
).
47.
A. C.
Levi
and
M.
Kotrla
,
J. Phys.: Condens. Matter
9
,
299
(
1997
).
48.
I. M.
Lifshitz
and
V. V.
Slyozov
,
J. Phys. Chem. Solids
19
,
35
(
1961
).
49.
C.
Wagner
,
Z. Elektrochem.
65
,
581
(
1961
).
50.
B. K.
Chakraverty
,
J. Phys. Chem. Solids
28
,
2401
(
1967
).
51.
I.
Beszeda
,
E. G.
Gontier-Moya
, and
Á. W.
Imre
,
Appl. Phys. A: Mater. Sci. Process.
81
,
673
(
2005
).
52.
P.
Buffat
and
J. P.
Borel
,
Phys. Rev. A
13
,
2287
(
1976
).
53.
F.
Ruffino
,
A.
Canino
,
M. G.
Grimaldi
,
F.
Giannazzo
,
F.
Roccaforte
, and
V.
Raineri
,
J. Appl. Phys.
104
,
024310
(
2008
).
You do not currently have access to this content.