The atomic composition, structural, morphological, and optical properties of N-rich copper nitride thin films have been investigated prior to and after annealing them in vacuum at temperatures up to 300°C. Films were characterized by means of ion-beam analysis (IBMA), X-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry techniques (SE). The data reveal that even when the total (integrated over the whole thickness) atomic composition of the films remains constant, nitrogen starts to migrate from the bulk to the film surface, without out-diffusing, at temperatures as low as 100°C. This migration leads to two chemical phases with different atomic concentration of nitrogen, lattice parameters, and crystallographic orientation but with the same crystal structure. XRD experimental and Rietveld refined data seem to confirm that nitrogen excess accommodates in interstitial locations within the anti-ReO3 crystal lattice forming a solid solution. The influence of nitrogen migration on the optical (electronic) properties of the films will be discussed.

1.
S.
Terada
,
H.
Tanaka
, and
K.
Kubota
,
J. Cryst. Growth
94
,
567
(
1989
).
2.
C.
Navío
,
M. J.
Capitán
,
J.
Álvarez
,
F.
Yndurain
, and
R.
Miranda
,
Phys. Rev. B
76
,
085105
(
2007
).
3.
T.
Törndahl
, Ph.D. thesis.
4.
C.
Gallardo-Vega
and
W.
de la Cruz
,
Appl. Surf. Sci.
252
,
8001
(
2006
).
5.
G.
Soto
,
J. A.
Diaz
, and
W.
de la Cruz
,
Mater. Lett.
57
,
4130
(
2003
).
6.
N.
Gordillo
,
R.
Gonzalez-Arrabal
,
M. S.
Martin-Gonzalez
,
J.
Olivares
,
A.
Rivera
,
F.
Briones
,
F.
Agulló-López
, and
D. O.
Boerma
,
J. Cryst. Growth
310
,
4362
(
2008
).
7.
K.
Venkata Subba Reddy
,
A.
Sivasankar Reddy
,
P.
Sreedhara Reddy
, and
S.
Uthanna
,
J. Mater. Sci.: Mater. Electron.
18
,
1003
(
2007
).
8.
T.
Maruyama
and
T.
Morishita
,
J. Appl. Phys.
78
,
4104
(
1995
).
9.
K. J.
Kim
,
J. H.
Kim
, and
J. H.
Kang
,
J. Cryst. Growth
222
,
767
(
2001
).
10.
Y.
Du
,
A. L.
Ji
,
L. B.
Ma
,
Y. Q.
Wang
, and
Z. X.
Cao
,
J. Cryst. Growth
280
,
490
(
2005
).
11.
Z. Q.
Liu
,
W. J.
Wang
,
T. M.
Wang
,
S.
Chao
, and
S. K.
Zheng
,
Thin Solid Films
325
,
55
(
1998
).
12.
L.
Maya
,
J. Vac. Sci. Technol. A
11
,
604
(
1993
).
13.
T.
Nosaka
,
M.
Yoshitake
,
A.
Okamoto
,
S.
Ogawa
, and
Y.
Nakayama
,
Thin Solid Films
348
,
8
(
1999
).
14.
G. H.
Yue
,
P. X.
Yan
,
J. Z.
Liu
,
M. X.
Wang
,
M.
Li
, and
X. M.
Yuan
,
J. Appl. Phys.
98
,
103506
(
2005
).
15.
T.
Nosaka
,
M.
Yoshikate
,
A.
Okamoto
,
S.
Ogawa
, and
Y.
Nakayama
,
Appl. Surf. Sci.
169–170
,
258
(
2001
).
16.
D. M.
Borsa
,
S.
Grachev
,
C.
Presura
, and
D. O.
Boerma
,
Appl. Phys. Lett.
80
,
1823
(
2002
).
17.
X. -D.
Ma
,
D. I.
Bazhanov
,
O.
Fruchart
,
F.
Yildiz
,
T.
Yokoyama
,
M.
Przybylski
,
V. S.
Stepanyuk
,
W.
Hergert
, and
M.
Kirschner
,
Phys. Rev. Lett.
102
,
205503
(
2009
).
18.
D. M.
Borsa
, Ph.D. thesis,
Material Science Centre, University of Groningen, Netherlands
,
2004
.
19.
J. M. D.
Coey
,
J. Magn. Magn. Mater.
200
,
405
(
1999
).
20.
S. K.
Shrestha
,
H.
Timmers
,
K. S. A.
Scott Butcher
, and
M.
Wintrebert-Fouquet
,
Curr. Appl. Phys.
4
,
237
(
2004
).
21.
I.
Fernández-Martinez
,
M. S.
Martín-González
,
R.
González-Arrabal
,
R.
Álvarez
,
F.
Briones
, and
J. L.
Costa-Krämer
,
J. Magn. Magn. Mater.
320
,
68
(
2008
).
22.
S.
Ghosh
,
F.
Singh
,
D.
Choudhary
,
D. K.
Avasthi
,
V.
Ganesan
,
P.
Shah
, and
A.
Gupta
,
Surf. Coat. Technol.
142–144
,
1034
(
2001
).
23.
Y.
Du
,
R.
Huang
,
R.
Song
,
L. B.
Ma
,
C.
Liu
,
C. R.
Li
, and
Z.
Cao
,
J. Mater. Res.
22
,
3052
(
2007
).
24.
D. J. W.
Mous
,
A.
Gottdang
, and
R. G.
Haitsma
,
Nucl. Instrum. Methods Phys. Res. B
109
,
177
(
2001
).
25.
D. J. W.
Mous
,
A.
Gottdang
,
R. G.
Haitsma
,
G.
García-López
,
A.
Climent-Font
,
F.
Agulló-López
, and
D.
Boerma
,
Inst. Phys. Conf. Ser.
680
,
999
(
2003
).
26.
E.
Andrzejewska
,
R.
Gonzalez-Arrabal
,
D.
Borsa
, and
D. O.
Boerma
,
Nucl. Instrum. Methods Phys. Res. B
249
,
838
(
2006
).
27.
J. R.
Tesmer
and
M.
Nastasi
,
Handbook of Modern Ion Beam Materials Analysis
,
MRS Symposia Proceedings
No. 980 (
Materials Research Society
,
Pittsburgh
,
1995
), p.
158
.
28.
A. C.
Larson
and
R. B.
Von Dreele
, “
General Structure Analysis System (GSAS)
,”
Los Alamos National Laboratory
Report No. LAUR 86–748,
2004
.
29.
I.
Horcas
,
R.
Fernández
,
J. M.
Rodríguez
,
J.
Colchero
,
J.
Gómez-Herrero
, and
M.
Baro
,
Rev. Sci. Instrum.
78
,
013705
(
2007
).
30.
V. I.
Soroka
,
M. V.
Artsimovich
,
I.
Yu Lobach
,
I. F.
Mogilnik
,
V. N.
Pavlovich
,
V. V.
Tokarevsky
,
E. M.
Kudriavtsev
, and
B. N.
Romanjuk
,
Nucl. Instrum. Methods Phys. Res. B
83
,
311
(
1993
).
31.
JCPDS
File No. 471088.
32.
C. -F.
Huang
,
B. -Y.
Tsui
, and
C. -H.
Lu
,
Jpn. J. Appl. Phys., Part 1
47
,
872
(
2008
).
34.
J.
Blucher
and
K.
Bang
,
Mater. Sci. Eng., A
117
,
L1
(
1989
).
35.
N.
Gordillo
,
R.
Gonzalez-Arrabal
,
A.
Alvarez-Herrero
, and
F.
Agulló-López
,
J. Phys. D
42
,
165101
(
2009
).
36.
JCPDS File No. 040836.
37.
JCPDS File No. 471072.
You do not currently have access to this content.