X-ray photoelectron diffraction simulations using a real-space approach are shown to accurately produce the extraordinarily detailed photoelectron diffraction pattern from Cu{111} at an electron kinetic energy of 523.5 eV. These same simulations show that most sensitivity is obtained when using low energy electrons at high angular resolution. Structural differences are observed to be greatest around a kinetic energy of 100eV and many of the features observed in the photoelectron diffraction patterns may be directly related to phenomena observed in low energy electron diffraction patterns from the same surface. For Cu{100}, simulations of buckled surfaces with a Mn overlayer predict that low energy photoelectron diffraction can easily discriminate chemical and structural differences. Even the effects of the relaxed surface of Cu{100} is indeed observable along azimuthal scans around a kinetic energy of 100 eV. Our results show that low energy photoelectron diffraction is extremely sensitive to changes in surface structure if high resolution patterns are acquired.

1.
D. P.
Woodruff
,
J. Electron Spectrosc. Relat. Phenom.
126
,
55
(
2002
).
2.
C. S.
Fadley
, in
Synchrotron Radiation Research: Advances in Surface and Interface Science
, edited by
R. Z.
Bachrach
(
Plenum
,
New York
,
1992
), Vol.
1
, p.
421
.
4.
J.
Osterwalder
,
P.
Aebi
,
R.
Fasel
,
D.
Naumovic
,
P.
Schwaller
,
T.
Kreutz
,
L.
Schlapbach
,
T.
Abukawa
, and
S.
Kono
,
Surf. Sci.
331–333
,
1002
(
1995
).
5.
W. F.
Egelhoff
, Jr.
,
Crit. Rev. Solid State Mater. Sci.
16
,
213
(
1990
).
6.
D.
Naumovic
,
A.
Stuck
,
T.
Greber
,
J.
Osterwalder
, and
L.
Schlapbach
,
Phys. Rev. B
47
,
7462
(
1993
).
7.
M. -L.
Xu
,
J. J.
Barton
, and
M. A.
Van Hove
,
Phys. Rev. B
39
,
8275
(
1989
).
8.
F. J.
Garcia de Abajo
,
M. A.
Van Hove
, and
C. S.
Fadley
,
Phys. Rev. B
63
,
075404
(
2001
).
9.
M.
Wuttig
,
C. C.
Knight
,
T.
Flores
, and
Y.
Gauthier
,
Surf. Sci.
292
,
189
(
1993
).
10.
G. P.
Cousland
,
A. E.
Smith
,
J.
Riley
,
S.
Homolya
,
A.
Stampfl
, and
J.
King-Lacroix
,
Proceedings of the 32nd Condensed Matter and Materials Meeting
, 29 January−1 February
2008
, Wagga Wagga. Available from: http://www.aip.org.au/wagga2008/.
11.
12.
H. L.
Davis
and
J. R.
Noonan
,
J. Vac. Sci. Technol.
20
,
842
(
1982
).
13.
L.
Broekman
,
A.
Tadich
,
E.
Huwald
,
J.
Riley
,
R.
Leckey
,
T.
Seyller
,
K.
Emtsev
, and
L.
Ley
,
J. Electron Spectrosc. Relat. Phenom.
144–147
,
1001
(
2005
).
14.
L.
Despont
,
D.
Naumovic
,
F.
Clerc
,
C.
Koitzsch
,
M. G.
Garnier
,
F. J.
Garcia de Abajo
,
M. A.
Van Hove
, and
P.
Aebi
,
Surf. Sci.
600
,
380
(
2006
).
15.
J. B.
Pendry
,
Low Energy Electron Diffraction
(
Academic
,
London
,
1974
).
16.
R.
Haydock
,
Solid State Phys.
35
,
215
(
1980
).
17.
C. J.
Powell
and
A.
Jablonski
,
J. Phys. Chem. Ref. Data
28
,
19
(
1999
).
18.
R.
Fasel
,
P.
Aebi
,
J.
Osterwalder
,
L.
Schlapbach
,
R. G.
Agostino
, and
G.
Chiarello
,
Phys. Rev. B
50
,
14516
(
1994
).
19.
J. -C.
Zheng
,
C. H. A.
Huan
,
A. T. S.
Wee
,
M. A.
Van Hove
,
C. S.
Fadley
,
F. J.
Shi
,
E.
Rotenberg
,
S. R.
Barman
,
J. J.
Paggel
,
K.
Horn
,
Ph.
Ebert
, and
K.
Urban
,
Phys. Rev. B
69
,
134107
(
2004
).
20.
D. E.
Fowler
and
J. V.
Barth
,
Phys. Rev. B
52
,
2117
(
1995
).
21.
E.
Zanazzi
and
F.
Jona
,
Surf. Sci.
62
,
61
(
1977
).
22.
You do not currently have access to this content.