Microring resonator filters, which are made of dielectric-loaded surface plasmon polariton waveguides and operate in the telecom spectral range, are thoroughly analyzed by means of vectorial three dimensional (3D) finite element method (FEM) simulations. The filters’ functional characteristics, such as the resonant frequencies where the transmission minima occur, the free spectral range, the extinction ratio, and the minima linewidth associated with the quality factor of the resonances, are investigated for different values of the key structural parameters, namely, the ring radius and the gap separating the bus waveguide from the ring. The rigorous 3D-FEM simulations are qualitatively complemented by a simplified model. Apart from the harmonic propagation simulations, the uncoupled microring is treated as an eigenvalue problem, and the frequencies of the resonances are compared with those of the transmission minima. Furthermore, the possibility of exploiting the thermally tuned microring resonator filter as a switching element is explored. The shift in the transmission minima is quantified when the ring’s refractive index is altered by virtue of Ohmic heating, and in addition to that, the temporal response is assessed by solving the transient problem.

1.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer-Verlag
,
Berlin
,
1988
).
2.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
,
Nature (London)
424
,
824
(
2003
).
3.
S. A.
Maier
and
H. A.
Atwater
,
J. Appl. Phys.
98
,
011101
(
2005
).
4.
R.
Zia
,
J. A.
Schuller
,
A.
Chandran
, and
M. L.
Brongersma
,
Mater. Today
9
,
20
(
2006
).
6.
T. W.
Ebbesen
,
C.
Genet
, and
S. I.
Bozhevolnyi
,
Phys. Today
61
(
5
),
44
(
2008
).
7.
8.
P.
Berini
,
R.
Charbonneau
,
N.
Lahoud
, and
G.
Mattiusi
,
J. Appl. Phys.
98
,
043109
(
2005
).
9.
S. I.
Bozhevolnyi
,
V. S.
Volkov
,
E.
Devaux
, and
T. W.
Ebbesen
,
Phys. Rev. Lett.
95
,
046802
(
2005
).
10.
K. C.
Vernon
,
D. K.
Gramotnev
, and
D. F. P.
Pile
,
J. Appl. Phys.
103
,
034304
(
2008
).
11.
C.
Reinhardt
,
S.
Passinger
,
B. N.
Chichkov
,
C.
Marquart
,
I. P.
Radko
, and
S. I.
Bozhevolnyi
,
Opt. Lett.
31
,
1307
(
2006
).
12.
B.
Steinberger
,
A.
Hohenau
,
H.
Ditlbacher
,
A. L.
Stepanov
,
A.
Drezet
,
F. R.
Aussenegg
,
A.
Leitner
, and
J. R.
Krenn
,
Appl. Phys. Lett.
88
,
094104
(
2006
).
13.
T.
Holmgaard
and
S. I.
Bozhevolnyi
,
Phys. Rev. B
75
,
245405
(
2007
).
14.
T.
Holmgaard
,
Z.
Chen
,
S. I.
Bozhevolnyi
,
L.
Markey
,
A.
Dereux
,
A. V.
Krasavin
, and
A. V.
Zayats
,
Opt. Express
16
,
13585
(
2008
).
15.
A. V.
Krasavin
and
A. V.
Zayats
,
Phys. Rev. B
78
,
045425
(
2008
).
16.
Z.
Chen
,
T.
Holmgaard
,
S. I.
Bozhevolnyi
,
A. V.
Krasavin
,
A. V.
Zayats
,
L.
Markey
, and
A.
Dereux
,
Opt. Lett.
34
,
310
(
2009
).
17.
T.
Holmgaard
,
Z.
Chen
,
S. I.
Bozhevolnyi
,
L.
Markey
,
A.
Dereux
,
A. V.
Krasavin
, and
A. V.
Zayats
,
Appl. Phys. Lett.
94
,
051111
(
2009
).
18.
T.
Holmgaard
,
Z.
Chen
,
S. I.
Bozhevolnyi
,
L.
Markey
, and
A.
Dereux
,
Opt. Express
17
,
2968
(
2009
).
19.
A.
Yariv
,
Electron. Lett.
36
,
321
(
2000
).
20.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
21.
J.
Jin
,
The Finite Element Method in Electromagnetics
, 2nd ed. (
Wiley
,
New York
,
2002
).
22.
M. A.
Popović
,
C.
Manolatou
, and
M. R.
Watts
,
Opt. Express
14
,
1208
(
2006
).
23.
T.
Nikolajsen
,
K.
Leosson
, and
S. I.
Bozhevolnyi
,
Appl. Phys. Lett.
85
,
5833
(
2004
).
24.
G.
Gagnon
,
N.
Lahoud
,
G. A.
Mattiussi
, and
P.
Berini
,
J. Lightwave Technol.
24
,
4391
(
2006
).
You do not currently have access to this content.