Ablation of single-crystalline (100) indium phosphide wafer surfaces with single 10 fs Ti:sapphire laser pulses in air has been studied by means of complementary cross-sectional transmission electron microscopy, scanning force microscopy, and optical microscopy. A local protrusion of 70nm height is generated within the ablation craters for fluences exceeding 0.78J/cm2. This morphological feature has been studied in detail, revealing the material structure of the laser-affected zone and its spatial extent. The resolidified layer (60–200 nm thick) consists of polycrystalline grains (5–15 nm diameter) and is covered by an 10nm thick amorphous top layer. Interestingly, the sharp boundary of the solidified layer to the unaffected crystal underneath exhibits a Gaussian-like shape and does not follow the shape of the surface topography. Evidence is presented that the central crater protrusion is formed by near-surface optical breakdown, and that the absorption in the material transiently changes during the femtosecond-laser pulse.

1.
Properties, Processing and Applications of Indium Phosphide
, edited by
T. P.
Pearsall
(
IEE
,
London
,
2000
).
2.
J.
Bonse
,
S. M.
Wiggins
, and
J.
Solis
,
J. Appl. Phys.
96
,
2628
(
2004
).
3.
J.
Bonse
,
S. M.
Wiggins
, and
J.
Solis
,
J. Appl. Phys.
96
,
2352
(
2004
).
4.
J.
Bonse
,
S. M.
Wiggins
, and
J.
Solis
,
Appl. Phys. A: Mater. Sci. Process.
80
,
243
(
2005
).
5.
J.
Bonse
,
G.
Bachelier
,
J.
Siegel
,
J.
Solis
, and
H.
Sturm
,
J. Appl. Phys.
103
,
054910
(
2008
).
6.
J.
Bonse
,
J. M.
Wrobel
,
J.
Krüger
, and
W.
Kautek
,
Appl. Phys. A: Mater. Sci. Process.
72
,
89
(
2001
).
7.
J.
Bonse
,
J. M.
Wrobel
,
K. -W.
Brzezinka
,
N.
Esser
, and
W.
Kautek
,
Appl. Surf. Sci.
202
,
272
(
2002
).
8.
A.
Borowiec
,
M.
MacKenzie
,
G. C.
Weatherly
, and
H. K.
Haugen
,
Appl. Phys. A: Mater. Sci. Process.
77
,
411
(
2003
).
9.
A.
Borowiec
,
D. M.
Bruce
,
D. T.
Cassidy
, and
H. K.
Haugen
,
Appl. Phys. Lett.
83
,
225
(
2003
).
10.
J.
Bonse
,
M.
Munz
, and
H.
Sturm
,
IEEE Trans. Nanotechnol.
3
,
358
(
2004
).
11.
A.
Borowiec
,
M.
Couillard
,
G. A.
Botton
, and
H. K.
Haugen
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1887
(
2004
).
12.
A.
Borowiec
,
H. F.
Tiedje
, and
H. K.
Haugen
,
Appl. Surf. Sci.
243
,
129
(
2005
).
13.
J.
Bonse
,
M.
Munz
, and
H.
Sturm
,
J. Appl. Phys.
97
,
013538
(
2005
).
14.
M.
Couillard
,
A.
Borowiec
,
H. K.
Haugen
,
J. S.
Preston
,
E. M.
Griswold
, and
G. A.
Botton
,
J. Appl. Phys.
101
,
033519
(
2007
).
15.
M.
Nisoli
,
S.
De Silvestri
,
O.
Svelto
,
R.
Szipöcs
,
K.
Ferencz
,
C.
Spielmann
,
S.
Sartania
, and
F.
Krausz
,
Opt. Lett.
22
,
522
(
1997
).
16.
G.
Steinmeyer
and
G.
Stibenz
,
Appl. Phys. B: Lasers Opt.
82
,
175
(
2006
).
17.
C.
Iaconis
and
I. A.
Walmsley
,
Opt. Lett.
23
,
792
(
1998
).
18.
G.
Stibenz
and
G.
Steinmeyer
,
Rev. Sci. Instrum.
77
,
073105
(
2006
).
19.
J. -C.
Diels
and
W.
Rudolph
,
Ultrashort Laser Pulse Phenomena
, 2nd ed. (
Academic
,
Burlington, MA
,
2006
).
20.
R. M.
Langford
and
A. K.
Petford-Long
,
J. Vac. Sci. Technol. A
19
,
2186
(
2001
).
21.
J.
Stuke
and
G.
Zimmerer
,
Phys. Status Solidi B
49
,
513
(
1972
).
22.
O. J.
Glembocki
and
H.
Piller
, in
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Academic
,
Orlando, FL
,
1985
).
23.
J.
Bonse
,
Appl. Phys. A: Mater. Sci. Process.
84
,
63
(
2006
).
24.
N.
Stojanovic
,
D.
von der Linde
,
K.
Sokolowski-Tinten
,
U.
Zastrau
,
F.
Perner
,
E.
Förster
,
R.
Sobierajski
,
R.
Nietubyc
,
M.
Jurek
,
D.
Klinger
,
J.
Pelka
,
J.
Krzywinski
,
L.
Juha
,
J.
Cihelka
,
A.
Velyhan
,
S.
Koptyaev
,
V.
Hajkova
,
J.
Chalupsky
,
J.
Kuba
,
T.
Tschentscher
,
S.
Toleikis
,
S.
Düsterer
, and
H.
Redlin
,
Appl. Phys. Lett.
89
,
241909
(
2006
).
25.
D.
von der Linde
and
K.
Sokolowski-Tinten
,
Appl. Surf. Sci.
154–155
,
1
(
2000
).
26.
J.
Bonse
,
G.
Bachelier
,
J.
Siegel
, and
J.
Solis
,
Phys. Rev. B
74
,
134106
(
2006
).
27.
R. W.
Cahn
,
Adv. Phys.
3
,
363
(
1954
).
28.
J. B.
Mullin
,
J. Cryst. Growth
264
,
578
(
2004
).
29.
Note that a similar scenario has been proposed in Ref. 24 to explain the shape of crater profiles of GaAs ablated by single femtosecond-laser pulse in air (620 nm, 100 fs, and 45°). The similarity of the behavior of GaAs and InP (which both have a very similar band structure) suggests that this, along with their values for the single- and two-photon absorption coefficients, plays a crucial role in the formation of the protrusion and distinguishes these direct semiconductor materials from other (indirect) semiconductors, such as Si and Ge, under similar excitation conditions (where such a protrusion has not been observed).
30.
E. N.
Glezer
,
Y.
Siegal
,
L.
Huang
, and
E.
Mazur
,
Phys. Rev. B
51
,
6959
(
1995
).
You do not currently have access to this content.