Experiments and simulations were performed to determine the difference between capacitive coupling and conductive connection for the electroporation of cells. The pulses used in the experiments have a peak voltage of 24 kV, 0.6 ns rise time, and 1.6 ns full width at half maximum. Experiments performed compare the conductive connection of the cell suspension versus a capacitively coupled cell suspension. The magnitude of the electric field was 16 kV/cm in both cases; however, the pulse shape is different. For the conductively connected case the cells located between the electrodes experienced an electric field in one direction only, whereas cells located between the electrodes in the capacitive coupling case were subject to an electric field that reverses direction. For the capacitively coupled case the bipolar pulse leads to no net cell charging. The conductive connection case is different, in that cells are left with a net polarization after the pulse is applied. Experimentally, only cells subject to the pulse with conductive connection demonstrated electroporation with the drug Bleomycin.

1.
W.
Rogers
,
J.
Merritt
,
J.
Comeaux
,
C.
Kuhnel
,
D.
Moreland
,
D.
Teltschik
,
J.
Lucas
, and
M.
Murphy
,
IEEE Trans. Plasma Sci.
32
,
1587
(
2004
).
2.
K.
Schoenbach
,
B.
Hargrave
,
R.
Joshi
,
J.
Kolb
,
R.
Nuccitelli
,
C.
Osgood
,
A.
Pakhomov
,
M.
Stacey
,
R.
Swanson
,
J.
White
,
S.
Xiao
,
J.
Zhang
,
S.
Beebe
,
P.
Blackmore
, and
E.
Buescher
,
IEEE Trans. Dielectr. Electr. Insul.
14
,
1088
(
2007
).
3.
S.
Beebe
,
J.
White
,
P.
Blackmore
,
Y.
Deng
,
K.
Somers
, and
K.
Schoenbach
,
DNA Cell Biol.
22
,
785
(
2003
).
4.
C.
Yao
,
Y.
Mi
,
X.
Hu
,
C.
Li
,
C.
Sun
,
J.
Tang
, and
X.
Wu
,
Proceedings of the 30th Annual International Conference of the IEEE Engineering
,
2008
(unpublished), pp.
1044
1047
.
5.
A.
Pakhomov
,
J.
Kolb
,
J.
White
,
R.
Joshi
,
S.
Xiao
, and
K.
Schoenbach
,
Bioelectromagnetics (N.Y.)
28
,
655
(
2007
).
6.
R.
Sundararajan
,
Mol. Biotechnol.
41
,
69
(
2009
).
7.
S.
Beebe
,
P.
Fox
,
L.
Rec
,
K.
Somers
,
R.
Stark
, and
K.
Schoenbach
,
IEEE Trans. Plasma Sci.
30
,
286
(
2002
).
8.
S.
Beebe
,
P.
Fox
,
L.
Rec
,
L.
Willis
, and
K.
Schoenbach
,
FASEB J.
17
,
1493
(
2003
).
9.
B.
Ibey
,
S.
Xiao
,
K.
Schoenbach
,
M.
Murphy
, and
A.
Pakhomov
,
Bioelectromagnetics (N.Y.)
30
,
92
(
2009
).
10.
J.
Deng
,
K.
Schoenbach
,
E.
Buescher
,
P.
Hair
,
P.
Fox
, and
S.
Beebe
,
Biophys. J.
84
,
2709
(
2003
).
11.
K.
Schoenbach
,
S.
Katsuki
,
H.
Akiyama
,
T.
Heeren
,
J.
Kolb
,
S.
Xiao
,
T.
Camp
,
R.
Joshi
,
C.
Osgood
,
R.
Nuccitell
, and
S.
Beebe
,
Proceedings of the 27th International Power Modulator Symposium
,
2006
(unpublished), pp.
573
576
.
12.
K.
Schoenbach
and
R.
Shu Xiao
,
IEEE Trans. Plasma Sci.
36
,
414
(
2008
).
13.
D.
Jordan
,
M.
Uhler
,
R.
Gilgenbach
, and
Y.
Lau
,
J. Appl. Phys.
99
,
094701
(
2006
).
You do not currently have access to this content.