Thin polycrystalline aluminum (1050 and 6061-T6 alloys) samples were shocked to 4 GPa to examine elastic wave attenuation not observed in thicker samples (1–10 mm). Using laser interferometry in plate impact experiments, particle velocity histories were obtained for 0.08–1 mm thick samples, thinned from bulk material. Unlike past work on thicker samples, thin 1050 Al samples reveal large and rapidly attenuating elastic wave amplitudes, indicating a time-dependent elastic-plastic response. Extrapolation of measured elastic wave amplitudes to larger sample thicknesses agrees well with previously observed amplitudes for thicker 1050 and 1060 Al samples. Thus, all of the results for relatively pure polycrystalline Al can be reconciled into a single consistent picture: elastic wave attenuation, due to time-dependent elastic-plastic response, is confined to material close to the impact surface. In contrast to the 1050 Al results, thin 6061-T6 Al samples reveal an elastic wave amplitude of 0.7GPa with no attenuation, in quantitative agreement with previous results for thick 6061-T6 Al samples. The lack of elastic wave attenuation even in thin samples suggests that elastic wave amplitudes in shocked 6061-T6 Al are governed by different plastic deformation mechanisms than those for shocked pure Al.

1.
G. R.
Fowles
,
J. Appl. Phys.
32
,
1475
(
1961
).
2.
J. N.
Johnson
and
L. M.
Barker
,
J. Appl. Phys.
40
,
4321
(
1969
).
3.
T. E.
Arvidsson
,
Y. M.
Gupta
, and
G. E.
Duvall
,
J. Appl. Phys.
46
,
4474
(
1975
).
4.
H.
Huang
and
J. R.
Asay
,
J. Appl. Phys.
98
,
033524
(
2005
).
5.
H.
Huang
and
J. R.
Asay
,
J. Appl. Phys.
100
,
043514
(
2006
).
6.
P. B.
Trivedi
,
J. R.
Asay
,
Y. M.
Gupta
, and
D. P.
Field
,
J. Appl. Phys.
102
,
083513
(
2007
).
7.
D. J.
Steinberg
,
Int. J. Impact Eng.
5
,
603
(
1987
).
8.
Y. M.
Gupta
,
J. M.
Winey
,
P. B.
Trivedi
,
B. M.
LaLone
,
R. F.
Smith
,
J. H.
Eggert
, and
G. W.
Collins
,
J. Appl. Phys.
105
,
036107
(
2009
).
9.
G. R.
Fowles
,
G. E.
Duvall
,
J. R.
Asay
,
P.
Bellamy
,
F.
Feistman
,
D.
Grady
,
T.
Michaels
, and
R.
Mitchell
,
Rev. Sci. Instrum.
41
,
984
(
1970
).
10.
J.
Wackerle
,
J. Appl. Phys.
33
,
922
(
1962
).
11.
L. M.
Barker
and
L. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
12.
K.
Syassen
and
W. B.
Holzapfel
,
J. Appl. Phys.
49
,
4427
(
1978
).
13.
The shear response was determined from the known bulk response (Ref. 12), together with the assumption that Poisson’s ratio is constant (ν=0.337).
14.
H. J.
McSkimin
,
J. Acoust. Soc. Am.
34
,
1271
(
1962
).
15.
R. N.
Thurston
,
H. J.
McSkimin
, and
P.
Andreatch
, Jr.
,
J. Appl. Phys.
37
,
267
(
1966
).
16.
Y. M.
Gupta
,
COPS Wave Propagation Code
, (
SRI International
,
Menlo Park, CA
,
1976
), unpublished.
17.
The wave profile for one of the 140μm thick 6061–T6 Al samples exhibited an elastic wave amplitude of 1.23 GPa – approximately twice the measured amplitude for the other 6061–T6 Al samples. The cause of this anomalous result is not clear. Because the other wave profiles for the 140μm samples were consistent with one another, the anomalous wave profile was not included in Table I or Fig. 7.
You do not currently have access to this content.