Molecular orientation-controlled charge transfer has been observed at the organic-organic heterojunction interfaces of copper-hexadecafluoro-phthalocyanine (F16CuPc) or copper(II) phthalocyanine (CuPc) on both standing-up and lying-down CuPc or F16CuPc thin films. In situ synchrotron-based photoemission spectroscopy reveals that the charge transfer at the standing F16CuPc/CuPc or CuPc/F16CuPc interface is much larger than that at the lying F16CuPc/CuPc or CuPc/F16CuPc interface. This can be explained by the orientation-dependent ionization potentials of well-ordered organic thin films, which place the highest-occupied molecular orbital of the standing CuPc film much closer to the lowest-unoccupied molecular orbital of the standing F16CuPc film, facilitating stronger charge transfer as compared to that at the lying OOH interfaces. Our results suggest the possibility of manipulating interfacial electronic structures of organic heterojunctions by controlling the molecular orientation, in particular for applications in ambipolar organic field transistors and organic photovoltaics.

1.
S. R.
Forrest
,
MRS Bull.
30
,
28
(
2005
).
2.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
).
3.
J.
Kido
,
M.
Kimura
, and
K.
Nagai
,
Science
267
,
1332
(
1995
).
4.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater.
14
,
99
(
2002
).
6.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
7.
A.
Kahn
,
N.
Koch
, and
W. Y.
Gao
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2529
(
2003
).
8.
N.
Koch
,
J. Phys.: Condens. Matter
20
,
184008
(
2008
).
9.
N.
Ueno
and
S.
Kera
,
Prog. Surf. Sci.
83
,
490
(
2008
).
10.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlman
,
Adv. Mater.
21
,
1450
(
2009
).
11.
D. R. T.
Zahn
,
G. N.
Gavrila
, and
G.
Salvan
,
Chem. Rev.
107
,
1161
(
2007
).
12.
N. R.
Armstrong
,
W. N.
Wang
,
D. M.
Alloway
,
D.
Placencia
,
E.
Ratcliff
, and
M.
Brumbach
,
Macromol. Rapid Commun.
30
,
717
(
2009
).
13.
D. M.
Alloway
and
N. R.
Armstrong
,
Appl. Phys. A: Mater. Sci. Process.
95
,
209
(
2009
).
14.
J.
Wang
,
H. B.
Wang
,
X. j.
Yan
,
H. C.
Huang
, and
D. H.
Yan
,
Appl. Phys. Lett.
87
,
093507
(
2005
).
15.
J.
Wang
,
H. B.
Wang
,
X. j.
Yan
,
H. C.
Huang
,
D.
Jin
,
J. W.
Shi
,
Y. H.
Tang
, and
D. H.
Yan
,
Adv. Funct. Mater.
16
,
824
(
2006
).
16.
K. M.
Lau
,
J. X.
Tang
,
H. Y.
Sun
,
C. S.
Lee
,
S. T.
Lee
, and
D. H.
Yan
,
Appl. Phys. Lett.
88
,
173513
(
2006
).
17.
F.
Zhu
,
H. B.
Wang
,
D.
Song
,
K.
Lou
, and
D. H.
Yan
,
Appl. Phys. Lett.
93
,
103308
(
2008
).
18.
F.
Zhu
,
J.
Yang
,
D.
Song
,
C.
Li
, and
D. H.
Yan
,
Appl. Phys. Lett.
94
,
143305
(
2009
).
19.
S.
Duhm
,
G.
Heimel
,
I.
Salzmann
,
H.
Glowatzkl
,
R. L.
Johnson
,
A.
Vollmer
,
J. P.
Rabe
, and
N.
Koch
,
Nature Mater.
7
,
326
(
2008
).
20.
I.
Salzmann
,
S.
Duhm
,
G.
Heimel
,
M.
Oehzelt
,
R.
Kniprath
,
R. L.
Johnson
,
J. P.
Rabe
, and
N.
Koch
,
J. Am. Chem. Soc.
130
,
12870
(
2008
).
21.
S.
Duhm
,
I.
Salzmann
,
G.
Heimel
,
M.
Oehzelt
,
A.
Haase
,
R. L.
Johnson
,
J. P.
Rabe
, and
N.
Koch
,
Appl. Phys. Lett.
94
,
033304
(
2009
).
22.
W.
Chen
,
H.
Huang
,
S.
Chen
,
Y. L.
Huang
, and
A. T. S.
Wee
,
Chem. Mater.
20
,
7017
(
2008
).
23.
M.
Brumbach
,
D.
Placencia
, and
N. R.
Armstrong
,
J. Phys. Chem. C
112
,
3142
(
2008
).
24.
W. J.
Potscavage
,
S.
Yoo
, and
B.
Kippelen
,
Appl. Phys. Lett.
93
,
193308
(
2008
).
25.
K. L.
Mutolo
,
E. I.
Mayo
,
B. P.
Rand
,
S. R.
Forrest
, and
M. E.
Thompson
,
J. Am. Chem. Soc.
128
,
8108
(
2006
).
26.
W.
Chen
,
S.
Chen
,
H.
Huang
,
D. C.
Qi
,
X. Y.
Gao
, and
A. T. S.
Wee
,
Appl. Phys. Lett.
92
,
063308
(
2008
).
27.
W.
Chen
,
H.
Huang
,
S.
Chen
,
L.
Chen
,
H. L.
Zhang
,
X. Y.
Gao
, and
A. T. S.
Wee
,
Appl. Phys. Lett.
91
,
114102
(
2007
);
W.
Chen
,
D. C.
Qi
,
Y. L.
Huang
,
H.
Huang
,
S.
Chen
,
X. Y.
Gao
, and
A. T. S.
Wee
,
J. Phys. Chem. C
113
,
12832
(
2009
).
28.
W.
Chen
,
H.
Huang
,
S.
Chen
,
X. Y.
Gao
, and
A. T. S.
Wee
,
J. Phys. Chem. C
112
,
5036
(
2008
).
29.
X. J.
Yu
,
O.
Wilhelmi
,
H. O.
Moser
,
S. V.
Vidyarai
,
X. Y.
Gao
,
A. T. S.
Wee
,
T.
Nyunt
,
H.
Qian
, and
H.
Zheng
,
J. Electron Spectrosc. Relat. Phenom.
144-147
,
1031
(
2005
).
30.
D. R. T.
Zahn
,
G. N.
Gavrila
, and
M.
Gorgoi
,
Chem. Phys.
325
,
99
(
2006
).
31.
S.
Chen
and
J.
Ma
,
J. Comput. Chem.
30
,
1959
(
2009
).
32.
M. J.
Frisch
 et al., GAUSSIAN 03, Revision D.01; Gaussian, Inc., Wallingford, CT,
2004
.
33.
W.
Osikowicz
,
M. P.
de Jong
, and
W. R.
Salaneck
,
Adv. Mater.
19
,
4213
(
2007
).
34.
S.
Braun
,
M. P.
de Jong
,
W.
Osikowicz
, and
W. R.
Salaneck
,
Appl. Phys. Lett.
91
,
202108
(
2007
).
You do not currently have access to this content.