Thick film (5μm thick) semiconducting polymer diodes incorporating poly(triarylamine) (PTAA) have been produced and applied as direct x-ray detectors. Experiments determined that a rectifying diode behavior persists when increasing the thickness of the active layer above typical thin film thicknesses (<1μm), and the electrical conduction mechanism of the diodes has been identified. Direct current and photoconductivity measurements on indium tin oxide/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/PTAA/metal diodes confirm that carrier conduction occurs via a Poole–Frenkel mechanism. The energy band structure of diodes (having gold or aluminum top electrodes) has been elucidated and used to explain the resulting electrical characteristics. Theoretical calculations show that, upon irradiation with x-rays, the diode quantum efficiency increases with increasing polymer film thickness. The diodes produced here display characteristics similar to their thin film analogs, meaning that they may be operated in a similar way and therefore may be useful for radiation dosimetry applications. Upon irradiation, the diodes produce an x-ray photocurrent that is proportional to the dose, thus demonstrating their suitability for direct x-ray detectors. The x-ray photocurrent remains the same in a device after a cumulative exposure of 600 Gy and after aging for 6 months.

1.
Y. -L.
Loo
and
I.
McCulloch
,
MRS Bull.
33
,
653
(
2008
).
2.
R. E.
Gill
,
P.
van de Weijer
,
C. T. H.
Liedenbaum
,
H. F. M.
Schoo
,
A.
Berntsen
,
J. J. M.
Vleggaar
, and
R. J.
Visser
,
Opt. Mater. (Amsterdam, Neth.)
12
,
183
(
1999
).
3.
J. C.
Blakesley
,
P. E.
Keivanidis
,
M.
Campoy-Quiles
,
C. R.
Newman
,
Y.
Jin
,
R.
Speller
,
H.
Sirringhaus
,
N. C.
Greenham
,
J.
Nelson
, and
P.
Stavrinou
,
Nucl. Instrum. Methods Phys. Res. A
580
,
774
(
2007
).
4.
C. J.
Wong
,
T.
Ackerly
,
C.
He
,
W.
Patterson
,
C. E.
Powell
,
A.
Ho
,
G.
Qiao
,
D. H.
Solomon
,
R.
Meder
, and
M.
Geso
,
Appl. Radiat. Isot.
65
,
1160
(
2007
);
[PubMed]
S. J.
Doran
,
Appl. Radiat. Isot.
67
,
393
(
2009
).
[PubMed]
5.
K.
Jordan
,
J. Phys.: Conf. Ser.
56
,
132
(
2006
);
Q.
Ma
,
S.
Tang
,
J.
Zou
, and
D.
Xu
,
Nucl. Sci. Techniques
19
,
50
(
2008
).
6.
B. D.
Milbrath
,
A. J.
Peurrung
,
M.
Bliss
, and
W. J.
Weber
,
J. Mater. Res.
23
,
2561
(
2008
).
7.
P.
Sellakumar
,
E. J. J.
Samuel
, and
S. S.
Supe
,
Radiat. Phys. Chem.
76
,
1108
(
2007
).
8.
P.
Beckerle
and
H.
Strobele
,
Nucl. Instrum. Methods Phys. Res. A
449
,
302
(
2000
);
Y.
Wang
and
N.
Herron
,
Science
273
,
632
(
1996
);
[PubMed]
D.
Natali
and
M.
Sampietro
,
Nucl. Instrum. Methods Phys. Res. A
512
,
419
(
2003
).
9.
F. D.
Boroumand
,
M.
Zhu
,
A. B.
Dalton
,
J. L.
Keddie
,
P. J.
Sellin
, and
J. J.
Gutierrez
,
Appl. Phys. Lett.
91
,
033509
(
2007
).
10.
S.
Barard
,
M.
Heeney
,
L.
Chen
,
M.
Cölle
,
M.
Shkunov
,
I.
McCulloch
,
N.
Stingelin
,
M.
Philips
, and
T.
Kreouzis
,
J. Appl. Phys.
105
,
013701
(
2009
).
11.
H.
Sirringhaus
,
Adv. Mater.
17
,
2411
(
2005
).
12.
J.
Veres
,
S.
Ogier
, and
G.
Lloyd
,
Chem. Mater.
16
,
4543
(
2004
).
13.
C. R.
Newman
,
H.
Sirringhaus
,
J. C.
Blakesley
, and
R.
Speller
,
Appl. Phys. Lett.
91
,
142105
(
2007
).
14.
T.
Yamamoto
,
T.
Ito
, and
K.
Kubota
,
Chem. Lett.
17
,
153
(
1988
).
15.
M. J.
Berger
,
J. H.
Hubbell
,
S. M.
Seltzer
,
J.
Chang
,
J. S.
Coursey
,
R.
Sukumar
, and
D. S.
Zucker
, XCOM, Photon Cross Sections Database, National Institute of Standards and Technology, USA, Standard Reference Database 8 (XGAM) (http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html).
16.
B. R.
Saunders
and
M. L.
Turner
,
Adv. Colloid Interface Sci.
138
,
1
(
2008
).
17.
K.
Kaeriyama
,
Y.
Tsukahara
,
S.
Negoro
,
N.
Tanigaki
, and
H.
Masuda
,
Synth. Met.
84
,
263
(
1997
).
18.
K.
Kanemoto
,
T.
Sudo
,
I.
Akai
,
H.
Hashimoto
,
T.
Karasawa
,
Y.
Aso
, and
T.
Otsubo
,
Phys. Rev. B
73
,
235203
(
2006
).
19.
L. O.
Peres
,
S. H.
Wang
,
J.
Wery
,
G.
Froyer
, and
E.
Faulques
,
Mater. Sci. Eng., C
29
,
372
(
2009
).
20.
A. P.
Monkman
,
M.
Halim
,
I. D. W.
Samuel
, and
L. E.
Horsburgh
,
J. Chem. Phys.
109
,
10372
(
1998
).
21.
D. M.
Taylor
,
IEEE Trans. Dielectr. Electr. Insul.
13
,
1063
(
2006
).
22.
J.
Frenkel
,
Phys. Rev.
54
,
647
(
1938
).
23.
A. J.
Heeger
,
I. D.
Parker
, and
Y.
Yang
,
Synth. Met.
67
,
23
(
1994
).
24.
M. A.
Lampert
,
Phys. Rev.
103
,
1648
(
1956
);
P.
Mark
and
W.
Helfrich
,
J. Appl. Phys.
33
,
205
(
1962
).
25.
C. A.
Mills
,
D. M.
Taylor
,
A.
Riul
, and
A. P.
Lee
,
J. Appl. Phys.
91
,
5182
(
2002
).
26.
D. M.
Taylor
and
H. L.
Gomes
,
J. Phys. D
28
,
2554
(
1995
).
27.
Q. -D.
Ling
,
D. -J.
Liaw
,
C.
Zhu
,
D. S.-H.
Chan
,
E. -T.
Kang
, and
K. -G.
Neoh
,
Prog. Polym. Sci.
33
,
917
(
2008
).
28.
S.
Sakthivel
,
B.
Chandar Shekar
,
D.
Mangalaraj
,
S. K.
Narayandass
,
S.
Venkatachalam
, and
P. V.
Prabhakaran
,
Eur. Polym. J.
33
,
1747
(
1997
).
29.
Manufacturers (Sigma-Aldrich) band-gap estimate: 1.6 eV (www.sigma-aldrich.co.uk).
30.
G.
Bernardo
,
A.
Charas
,
L.
Alcácer
, and
J.
Morgado
,
J. Appl. Phys.
103
,
084510
(
2008
).
31.
J. H.
Sim
,
K.
Yamada
,
S. H.
Lee
,
S.
Yokokura
, and
H.
Sato
,
Synth. Met.
157
,
940
(
2007
).
32.
M. G.
Harrison
and
J.
Grüner
,
Synth. Met.
84
,
653
(
1997
).
33.
M. G.
Harrison
,
J.
Grüner
, and
G. C. W.
Spencer
,
Phys. Rev. B
55
,
7831
(
1997
);
K.
Pichler
,
D. A.
Halliday
,
D. D. C.
Bradley
,
P. L.
Bum
,
R. H.
Friend
, and
A. B.
Holmes
,
J. Phys.: Condens. Matter
5
,
7155
(
1993
).
34.
F.
Feller
and
A. P.
Monkman
,
Appl. Phys. Lett.
76
,
664
(
2000
).
35.
H.
Richardson
,
M.
Sferrazza
, and
J. L.
Keddie
,
Eur. Phys. J. E
12
,
87
(
2003
).
36.
S. G.
Croll
,
J. Appl. Polym. Sci.
23
,
847
(
1979
);
G.
Reiter
and
P. -G.
de Gennes
,
Eur. Phys. J. E
6
,
25
(
2001
).
37.
H.
Richardson
,
Í.
López-García
,
M.
Sferrazza
, and
J. L.
Keddie
,
Phys. Rev. E
70
,
051805
(
2004
).
38.
D. R.
Baigent
,
F.
Cacialli
,
N. C.
Greenham
,
J.
Gruner
,
H. F.
Wittmann
,
R. H.
Friend
,
S. C.
Moratti
, and
A. B.
Holmes
,
Solid-State Electron.
40
,
477
(
1996
).
39.
B. G.
Lowe
and
R. A.
Sareen
,
Nucl. Instrum. Methods Phys. Res. A
576
,
367
(
2007
).
You do not currently have access to this content.