The microplasma thruster (MPT) concept is a simple extension of a cold gas micronozzle propulsion device, where a direct-current microdischarge is used to preheat the gas stream to improve the specific impulse of the device. Here we study a prototypical MPT device using a detailed, self-consistently coupled plasma and flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Compared to a cold gas micronozzle, a significant increase in specific impulse is obtained from the power deposition in the diverging section of the MPT nozzle. For a discharge voltage of 750 V, a power input of 650 mW, and an argon mass flow rate of 5 SCCM (SCCM denotes cubic centimeter per minute at STP), the specific impulse of the device is increased by a factor of 1.5 to about 74 s. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the MPT concept as a simple and effective approach to improve the performance of micronozzle cold gas propulsion devices.

1.
M. M.
Micci
and
A. D.
Ketsdever
,
Progress in Astronautics and Aeronautics
(
AIAA
,
Reston, VA
,
2000
).
2.
3.
C. D.
Brown
,
Spacecraft Propulsion
(
American Institute of Aeronautics and Astronautics
,
Washington, DC
,
1996
).
4.
C.
Xie
,
Phys. Fluids
19
,
037102
(
2007
).
5.
A. A.
Alexeenko
,
D. A.
Levin
,
S. F.
Gimelshein
,
R. J.
Collins
, and
B. D.
Reed
,
AIAA J.
40
,
897
(
2002
).
6.
K. L.
Williams
,
A. B.
Eriksson
,
R.
Thorslund
,
J.
Köhler
,
M.
Boman
, and
L.
Stenmark
,
J. Micromech. Microeng.
16
,
1154
(
2006
).
7.
U.
KC
,
J.
Bingaman
,
P. L.
Varghese
, and
L. L.
Raja
,
Proceedings of the Second European Conference for Aerospace Sciences
, Brussels, Belgium,
2007
(unpublished).
8.
I. G.
Coxhill
and
D.
Gibbon
,
Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Tucson, AZ,
2005
(unpublished), AIAA Paper No. 2005-260.
9.
P. S.
Kothnur
and
L. L.
Raja
,
Contrib. Plasma Phys.
47
,
9
(
2007
).
10.
R. A.
Arakoni
,
J. J.
Ewing
, and
M. J.
Kushner
,
J. Phys. D
41
,
105208
(
2008
).
11.
S.
Mahadevan
and
L. L.
Raja
,
Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibit
, Orlando, FL,
2009
(unpublished), AIAA Paper No. 2009-1192.
12.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
13.
H. W.
Ellis
,
R. Y.
Pai
,
E. W.
McDaniel
,
E. A.
Mason
, and
L. A.
Vielhand
,
At. Data Nucl. Data Tables
17
,
177
(
1976
).
14.
R.
Kee
,
G.
Dixon-Lewis
,
J.
Warnatz
,
M.
Coltrin
, and
J.
Miller
, “
A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties
,” Sandia Report No. SAND86-8246,
1995
.
15.
J. P.
Boeuf
,
L. C.
Pitchford
, and
K. H.
Schoenbach
,
Appl. Phys. Lett.
86
,
071501
(
2005
).
16.
T.
Deconinck
,
S.
Mahadevan
, and
L. L.
Raja
,
J. Comput. Phys.
228
,
4435
(
2009
).
17.
M. -S.
Liou
and
C. J.
Steffen
,
J. Comput. Phys.
107
,
23
(
1993
).
18.
A.
Haselbacher
and
J.
Blazek
,
AIAA J.
38
,
2094
(
2000
).
19.
V.
Venkatakrishnan
,
J. Comput. Phys.
118
,
120
(
1995
).
20.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
1994
).
21.
B.
Lay
,
R. S.
Moss
,
S.
Rauf
, and
M. J.
Kushner
,
Plasma Sources Sci. Technol.
12
,
8
(
2003
).
22.
I.
Revel
,
L. C.
Pitchford
, and
J. -P.
Boeuf
,
J. Appl. Phys.
88
,
2234
(
2000
).
23.
24.
Q.
Wang
,
D. J.
Economou
, and
V. M.
Donnelly
,
J. Appl. Phys.
100
,
023301
(
2006
).
You do not currently have access to this content.