The maximum actuation frequency of magnetic shape-memory alloys (MSMAs) significantly increases with decreasing size of the transducer making MSMAs interesting candidates for small scale actuator applications. To study the mechanical properties of Ni–Mn–Ga single crystals on small length scales, two single-domain micropillars with dimensions of 10×15×30μm3 were fabricated from a Ni–Mn–Ga monocrystal using dual beam focused ion beam machining. The pillars were oriented such that the crystallographic c direction was perpendicular to the loading direction. The pillars were compressed to maximum stresses of 350 and 50 MPa, respectively. Atomic force microscopy and magnetic force microscopy were performed prior to fabrication of the pillars and following the deformation experiments. Both micropillars were deformed by twinning as evidenced by the stress-strain curve. For one pillar, a permanent deformation of 3.6% was observed and ac twins (10M martensite) were identified after unloading. For the other pillar, only 0.7% remained upon unloading. No twins were found in this pillar after unloading. The recovery of deformation is discussed in the light of pseudoelastic twinning and twin-substrate interaction. The twinning stress was higher than in similar macroscopic material. However, further studies are needed to substantiate a size effect.

1.
K.
Ullakko
,
J. K.
Huang
,
C.
Kantner
, and
R. C.
O’Handley
,
Appl. Phys. Lett.
69
,
1966
(
1996
).
2.
A.
Sozinov
,
A. A.
Likhachev
,
N.
Lanska
, and
K.
Ullakko
,
Appl. Phys. Lett.
80
,
1746
(
2002
).
3.
R. C.
O’Handley
,
S. J.
Murray
,
M.
Marioni
,
H.
Nembach
, and
S. M.
Allen
,
J. Appl. Phys.
87
,
4712
(
2000
).
4.
V. A.
Chernenko
and
V. A.
L’vov
,
Mater. Sci. Forum
583
,
1
(
2008
).
5.
G.
Kostorz
and
P.
Müllner
,
Z. Metallkd.
96
,
703
(
2005
).
6.
P.
Müllner
and
G.
Kostorz
,
Mater. Sci. Forum
583
,
43
(
2008
).
7.
Y.
Ganor
,
D.
Shilo
,
T. W.
Shield
, and
R. D.
James
,
Appl. Phys. Lett.
93
,
122509
(
2008
).
8.
M. A.
Marioni
,
R. C.
O’Handley
, and
S. M.
Allen
,
Appl. Phys. Lett.
83
,
3966
(
2003
).
9.
P.
Müllner
,
V. A.
Chernenko
, and
G.
Kostorz
,
Scr. Mater.
49
,
129
(
2003
).
10.
N.
Sarawate
and
M.
Dapino
,
Appl. Phys. Lett.
88
,
121923
(
2006
).
11.
I.
Karaman
,
B.
Basaran
,
H. E.
Karaca
,
A. I.
Karsilayan
, and
Y. I.
Chumlyakov
,
Appl. Phys. Lett.
90
,
172505
(
2007
).
12.
D.
Carpenter
,
M.
Chmielus
,
A.
Rothenbühler
,
R.
Schneider
, and
P.
Müllner
,
Proceedings of the International Conference of ICOMAT’08
, Santa Fe, NM, 29 June–4 July
2008
(unpublished).
13.
N. A.
Stelmashenko
,
M. G.
Walls
,
L. M.
Brown
, and
Y. V.
Milliman
,
Acta Metall. Mater.
41
,
2855
(
1993
).
14.
A. C.
Fischer-Cripps
,
Nanoindentation
(
Springer
,
New York
,
2004
).
15.
N. A.
Fleck
,
G. M.
Muller
,
M. F.
Ashby
, and
J. W.
Hutchinson
,
Acta Metall. Mater.
42
,
475
(
1994
).
16.
J. S.
Stölken
and
A. G.
Evans
,
Acta Mater.
46
,
5109
(
1998
).
17.
C.
Motz
,
T.
Schöberl
, and
R.
Pippan
,
Acta Mater.
53
,
4269
(
2005
).
18.
D.
Kiener
,
W.
Grosinger
,
G.
Dehm
, and
R.
Pippan
,
Acta Mater.
56
,
580
(
2008
).
19.
M. A.
Haque
and
M. T. A.
Saif
,
J. Microelectromech. Syst.
10
,
146
(
2001
).
20.
M. D.
Uchic
and
D. M.
Dimiduk
,
Mater. Sci. Eng., A
400–401
,
268
(
2005
).
21.
B.
Moser
,
K.
Wasmer
,
L.
Barbieri
, and
J.
Michler
,
J. Mater. Res.
22
,
1004
(
2007
).
22.
C. A.
Volkert
and
E. T.
Lilleodden
,
Philos. Mag.
86
,
5567
(
2006
).
23.
D.
Kiener
,
C.
Motz
,
T.
Schöberl
,
M.
Jenko
, and
G.
Dehm
,
Adv. Eng. Mater.
8
,
1119
(
2006
).
24.
J. R.
Greer
and
W. D.
Nix
,
Phys. Rev. B
73
,
245410
(
2006
).
26.
H.
Mughrabi
,
Mater. Sci. Eng.
33
,
207
(
1978
).
27.
R. C.
Pond
and
P. J.
Hirth
,
Solid State Phys.
47
,
287
(
1994
).
28.
R. C.
Pond
and
S.
Celloto
,
Int. Mater. Rev.
48
,
225
(
2003
).
29.
P.
Müllner
,
V. A.
Chernenko
,
M.
Wollgarten
, and
G.
Kostorz
,
J. Appl. Phys.
92
,
6708
(
2002
).
30.
P.
Müllner
,
Int. J. Mater. Res.
97
,
205
(
2006
).
31.
M. I.
Richard
,
J.
Feuchtwanger
,
S. M.
Allen
,
R. C.
O’Handley
,
P.
Lázpita
, and
J. M.
Barandiaran
,
Metall. Mater. Trans. A
38
,
777
(
2007
).
32.
P.
Müllner
,
Z.
Clark
,
L.
Kenoyer
,
W. B.
Knowlton
, and
G.
Kostorz
,
Mater. Sci. Eng., A
481–482
,
66
(
2008
).
33.
M.
Reinhold
,
W. B.
Knowlton
, and
P.
Müllner
,
Proceedings of the International Conference of ICOMAT’08
, Santa Fe, NM, 29 June–4 July
2008
(unpublished).
34.
Y.
Ge
,
O.
Heczko
,
O.
Söderberg
, and
S. P.
Hannula
,
Mater. Sci. Eng., A
481–482
,
302
(
2008
).
35.
D.
Niklasch
,
H. J.
Maier
, and
I.
Karaman
,
Rev. Sci. Instrum.
79
,
113701
(
2008
).
36.
P.
Müllner
,
V. A.
Chernenko
, and
G.
Kostorz
,
J. Appl. Phys.
95
,
1531
(
2004
).
37.
P.
Müllner
,
D.
Mukherji
,
M.
Aguirre
,
R.
Erni
, and
G.
Kostroz
, in
Solid-to-Solid Phase Transformations in Inorganic Materials 2005
, Vol. 2, edited by
J. M.
Howe
,
D. E.
Laughlin
,
J. K.
Lee
,
U.
Dahmen
, and
W. A.
Soffa
(
TMS
,
Warrendale, PA
,
2005
), pp.
171
185
.
38.
J.
McCarthy
,
Z.
Pei
,
M.
Becker
, and
D.
Atteridge
,
Thin Solid Films
358
,
146
(
2000
).
39.
Yu. P.
Sharkeev
and
E. V.
Kozlov
,
Surf. Coat. Technol.
158–159
,
219
(
2002
).
40.
E. V.
Kozlov
,
A. I.
Ryabchikov
,
Yu. P.
Sharkeev
,
I. B.
Stepanov
,
S. V.
Frotuna
,
D. O.
Sivin
,
I. A.
Kurzina
,
T. S.
Prokopova
, and
I. A.
Mel’nik
,
Surf. Coat. Technol.
158–159
,
343
(
2002
).
41.
G.
Dehm
,
S. H.
Oh
,
P.
Gruber
,
M.
Legros
, and
F. D.
Fischer
,
Acta Mater.
55
,
6659
(
2007
).
42.
D.
Kiener
,
W.
Grosinger
, and
G.
Dehm
,
Scr. Mater.
60
,
148
(
2009
).
43.
D.
Kiener
,
C.
Motz
, and
G.
Dehm
,
Mater. Sci. Eng., A
505
,
79
(
2009
).
44.
A. M.
Kosevich
and
V. S.
Boiko
,
Sov. Phys. Usp.
14
,
286
(
1971
).
45.
D. L.
Schlagel
,
Y. L.
Wu
,
W.
Zhang
, and
T. A.
Lograsso
,
J. Alloys Compd.
312
,
77
(
2000
).
46.
M.
Richard
,
J.
Feuchtwanger
,
D.
Schlagel
,
T.
Lograsso
,
S. M.
Allen
, and
R. C.
O’Handley
,
Scr. Mater.
54
,
1797
(
2006
).
47.
You do not currently have access to this content.