We present a concept of a new kind of memory element, a thermal memory cell, where a byte of digital information can be stored into the storage medium by pure thermal manipulation. Thermal inscription of information employs a specific temperature-time profile that involves continuous cooling and isothermal waiting time periods in the absence of any external magnetic or electric field. Our storage media are magnetically frustrated solids. We succeeded to thermally write arbitrary American Standard Code for Information Interchange characters into the Taylor-phase T-Al3(Mn,Fe) complex intermetallic compound and the Cu–Mn canonical spin glass. Besides for data storage, the concept may be employed for secure data transfer and for retrieving cosmological information from extraterrestrial dust particles.

1.
J. P.
Bouchaud
,
V.
Dupuis
,
J.
Hammann
, and
E.
Vincent
,
Phys. Rev. B
65
,
024439
(
2001
).
2.
J.
Dolinšek
,
J.
Slanovec
,
Z.
Jagličić
,
M.
Heggen
,
S.
Balanetskyy
,
M.
Feuerbacher
, and
K.
Urban
,
Phys. Rev. B
77
,
064430
(
2008
).
3.
J. P.
Bouchaud
,
L. F.
Cugliandolo
,
J.
Kurchan
, and
M.
Mézard
, in
Spin Glasses and Random Fields
, edited by
A. P.
Young
(
World Scientific
,
Singapore
,
1998
), p.
161
.
4.
N.
Kawashima
and
H.
Rieger
, in
Frustrated Spin Systems
, edited by
H. T.
Diep
(
World Scientific
,
Singapore
,
2004
), p.
491
.
5.
E.
Vincent
,
J.
Hammann
,
M.
Ocio
,
J. P.
Bouchaud
, and
L. F.
Cugliandolo
, in
Complex Behaviour of Glassy Systems
,
Lecture Notes in Physics
Vol.
492
, edited by
M.
Rubi
(
Springer-Verlag
,
Berlin
,
1997
), p.
184
.
6.
P.
Nordblad
and
P.
Svedlindh
, in
Spin Glasses and Random Fields
, edited by
A. P.
Young
(
World Scientific
,
Singapore
,
1998
), p.
1
.
7.
K.
Jonason
,
E.
Vincent
,
J.
Hammann
,
J. P.
Bouchaud
, and
P.
Nordblad
,
Phys. Rev. Lett.
81
,
3243
(
1998
).
8.
V.
Dupuis
,
E.
Vincent
,
J. P.
Bouchaud
,
J.
Hammann
,
A.
Ito
, and
H.
Aruga Katori
,
Phys. Rev. B
64
,
174204
(
2001
).
9.
See, for a review,
K.
Binder
and
A. P.
Young
,
Rev. Mod. Phys.
58
,
801
(
1986
).
10.
P.
Jönsson
,
M. F.
Hansen
, and
P.
Nordblad
,
Phys. Rev. B
61
,
1261
(
2000
).
11.
O.
Cador
,
F.
Grasset
,
H.
Haneda
, and
J.
Etourneau
,
J. Magn. Magn. Mater.
268
,
232
(
2004
).
12.
A. V.
Kityk
,
M. C.
Rheinstädter
,
K.
Knorr
, and
H.
Rieger
,
Phys. Rev. B
65
,
144415
(
2002
).
13.
F.
Alberici-Kious
,
J. P.
Bouchaud
,
L. F.
Cugliandolo
,
P.
Doussineau
, and
A.
Levelut
,
Phys. Rev. Lett.
81
,
4987
(
1998
).
14.
F.
Alberici
,
P.
Doussineau
, and
A.
Levelut
,
Europhys. Lett.
39
,
329
(
1997
).
15.
P.
Doussineau
,
T.
de Lacerda-Arôso
, and
A.
Levelut
,
Europhys. Lett.
46
,
401
(
1999
).
16.
E. V.
Colla
,
L. K.
Chao
,
M. B.
Weissman
, and
D. D.
Viehland
,
Phys. Rev. Lett.
85
,
3033
(
2000
).
17.
B. D.
Gaulin
,
J. N.
Reimers
,
T. E.
Mason
,
J. E.
Greedan
, and
Z.
Tun
,
Phys. Rev. Lett.
69
,
3244
(
1992
).
18.
A.
Lafond
,
A.
Meerschaut
,
J.
Rouxel
,
J. L.
Tholence
, and
A.
Sulpice
,
Phys. Rev. B
52
,
1112
(
1995
).
19.
J.
Dolinšek
,
Z.
Jagličić
,
M. A.
Chernikov
,
I. R.
Fisher
, and
P. C.
Canfield
,
Phys. Rev. B
64
,
224209
(
2001
).
20.
J.
Dolinšek
,
Z.
Jagličić
,
T. J.
Sato
,
J. Q.
Guo
, and
A. P.
Tsai
,
J. Phys.: Condens. Matter
15
,
7981
(
2003
).
21.
S.
Balanetskyy
,
G.
Meisterernst
,
M.
Heggen
, and
M.
Feuerbacher
,
Intermetallics
16
,
71
(
2008
).
22.
The zfc reference cooling run without any stop is performed only once. It provides calibration of the TMC for the determination of the difference signal ΔM in all subsequent cooling runs involving thermal inscription of information.
You do not currently have access to this content.