CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/raregas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.51273.1cm1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al [J. Appl. Phys.104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400<Tgas<2200K), while the reverse transformation C2H2CH4 is favored in the more distant regions where Tgas<1400K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH4C2H2 conversion, whereas the reverse C2H2CH4 process only requires H atoms to drive the reactions; H atoms are not consumed by the overall conversion.

1.
D. G.
Goodwin
and
J. E.
Butler
, in
Handbook of Industrial Diamonds and Diamond Films
, edited by
M. A.
Prelas
,
G.
Popovici
, and
L. K.
Bigelow
(
Dekker
,
New York
,
1998
), pp.
527
581
and references therein.
2.
J.
Isberg
,
J.
Hammersberg
,
E.
Johansson
,
T.
Wikstrom
,
D. J.
Twitchen
,
A. J.
Whitehead
,
S. E.
Coe
, and
G. A.
Scarsbrook
,
Science
297
,
1670
(
2002
).
3.
C. S.
Yan
,
Y. K.
Vohra
,
H. K.
Mao
, and
R. J.
Hemley
,
Phys. Status Solidi A
201
,
R25
(
2004
).
4.
G.
Bogdan
,
K.
de Corte
,
W.
Deferme
,
K.
Haenen
, and
M.
Nesládek
,
Phys. Status Solidi A
203
,
3063
(
2006
).
5.
Yu. A.
Mankelevich
,
M. N. R.
Ashfold
, and
J.
Ma
,
J. Appl. Phys.
104
,
113304
(
2008
).
6.
M. N. R.
Ashfold
,
P. W.
May
,
J. R.
Petherbridge
,
K. N.
Rosser
,
J. A.
Smith
,
Y. A.
Mankelevich
, and
N. V.
Suetin
,
Phys. Chem. Chem. Phys.
3
,
3471
(
2001
) and references therein.
7.
P. K.
Bachmann
,
D.
Leers
, and
H.
Lydtin
,
Diamond Relat. Mater.
1
,
1
(
1991
) and references therein.
8.
T.
Mitomo
,
E.
Kondoh
, and
H.
Ohtsuka
,
J. Appl. Phys.
70
,
4532
(
1991
).
9.
W. L.
Hsu
,
M. C.
McMaster
,
M. E.
Coltrin
, and
D. S.
Dandy
,
Jpn. J. Appl. Phys., Part 1
33
,
2231
(
1994
).
10.
M. C.
McMaster
,
W. L.
Hsu
,
M. E.
Coltrin
,
D. S.
Dandy
, and
C.
Fox
,
Diamond Relat. Mater.
4
,
1000
(
1995
).
11.
F. G.
Celii
,
P. E.
Pehrsson
,
H. -t.
Wang
, and
J. E.
Butler
,
Appl. Phys. Lett.
52
,
2043
(
1988
).
12.
F. G.
Celii
and
J. E.
Butler
,
Annu. Rev. Phys. Chem.
42
,
643
(
1991
).
13.
G.
Lombardi
,
G. D.
Stancu
,
F.
Hempel
,
A.
Gicquel
, and
J.
Röpcke
,
Plasma Sources Sci. Technol.
13
,
27
(
2004
).
14.
G.
Lombardi
,
K.
Hassouni
,
G. D.
Stancu
,
L.
Mechold
,
J.
Röpcke
, and
A.
Gicquel
,
Plasma Sources Sci. Technol.
14
,
440
(
2005
).
15.
G.
Lombardi
,
K.
Hassouni
,
G. D.
Stancu
,
L.
Mechold
,
J.
Röpcke
, and
A.
Gicquel
,
J. Appl. Phys.
98
,
053303
(
2005
).
16.
A.
Cheesman
,
J. A.
Smith
,
M. N. R.
Ashfold
,
N.
Langford
,
S.
Wright
, and
G.
Duxbury
,
J. Phys. Chem. A
110
,
2821
(
2006
).
17.
R. F.
Kazarinov
and
R. A.
Suris
,
Sov. Phys. Semicond.
5
,
707
(
1971
).
18.
J.
Faist
,
F.
Capasso
,
D. L.
Sivco
,
C.
Sirtori
,
A. L.
Hutchinson
, and
A. Y.
Cho
,
Science
264
,
553
(
1994
).
19.
G.
Duxbury
,
N.
Langford
,
M. T.
McCulloch
, and
S.
Wright
,
Chem. Soc. Rev.
34
,
921
(
2005
).
20.
J.
Ma
,
J. C.
Richley
,
M. N. R.
Ashfold
, and
Yu. A.
Mankelevich
,
J. Appl. Phys.
104
,
103305
(
2008
).
21.
L. S.
Rothman
,
A.
Barbe
,
D. C.
Benner
,
L. R.
Brown
,
C.
Camy-Peyret
,
M. R.
Carleer
,
K.
Chance
,
C.
Clerbaux
,
V.
Dana
,
V. M.
Devi
,
J. -M.
Flaud
,
R. R.
Gamache
,
A.
Goldman
,
D.
Jacquemart
,
K. W.
Jucks
,
W. J.
Lafferty
,
J. -Y.
Mandin
,
S. T.
Massie
,
V.
Nemtchinov
,
D. A.
Newnham
,
A.
Perrin
,
C. P.
Rinsland
,
J.
Schroeder
,
K. M.
Smith
,
M. A. H.
Smith
,
K.
Tang
,
R. A.
Toth
,
J.
Vander Auwera
,
P.
Varanasi
, and
K.
Yoshino
,
J. Quant. Spectrosc. Radiat. Transf.
82
,
5
(
2003
).
22.
Y.
Kabbadj
,
M.
Herman
,
G.
Di Lonardo
,
L.
Fusina
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
150
,
535
(
1991
).
23.
J.
Ma
,
M. N. R.
Ashfold
, and
Yu. A.
Mankelevich
,
J. Appl. Phys.
105
,
043302
(
2009
).
24.
O. J. L.
Fox
,
J.
Ma
,
P. W.
May
,
M. N. R.
Ashfold
, and
Yu. A.
Mankelevich
,
Diamond Relat. Mater.
18
,
750
(
2009
).
25.
M.
Herman
,
T. R.
Huet
,
Y.
Kabbadj
, and
J.
Vander Auwera
,
Mol. Phys.
72
,
75
(
1991
).
26.
G.
Herzberg
,
Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1945
).
You do not currently have access to this content.