We report on efficient polymeric white organic light-emitting diodes with unprecedented stability. The investigated devices are based on an electroluminescent copolymer of electron and hole-transporting units and red-, green-, and blue-emitting chromophores. We find that the glass transition of the polymer (Tg=182.5°C) is the process determining the relation between thermal annealing during fabrication and device lifetime. For devices annealed below Tg, the device lifetime significantly increases with increasing annealing temperature. For annealing temperatures above Tg, however, the current density in the devices rapidly increases while their lifetime slightly decreases. Insight into the underlying processes is provided by atomic force microscopy phase imaging and by UV/visible and fluorescence spectroscopy. We also investigated the influence of the operating temperature of the device: besides the commonly known fact that elevated operating temperatures reduce the lifetime, we discovered that the acceleration coefficient, which determines the scaling of the device lifetime with applied current density, was reduced. At the glass transition, the device lifetime no longer depended on the current density. The device lifetime was improved even further by introducing an additional cross-linkable hole-transport layer. Optimized devices achieve a half-luminance lifetime of 1860 h when operated at room temperature and at an initial luminance of 500cdm2. As a result of the relatively balanced stability of the three chromophores, the emission spectrum remains virtually unchanged over the entire device lifetime. Finally, to reduce the time required for the lifetime measurements, we propose to analyze the voltage increase over the first 10–50 h of the lifetime test and find that this allows precisely estimating the lifetime of our devices.

1.
G.
Schwartz
,
M.
Pfeiffer
,
S.
Reineke
,
K.
Walzer
, and
K.
Leo
,
Adv. Mater. (Weinheim, Ger.)
19
,
3672
(
2007
).
2.
Y. R.
Sun
,
N. C.
Giebink
,
H.
Kanno
,
B. W.
Ma
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nature (London)
440
,
908
(
2006
).
3.
M. C.
Gather
,
R.
Alle
,
H.
Becker
, and
K.
Meerholz
,
Adv. Mater. (Weinheim, Ger.)
19
,
4460
(
2007
).
4.
X.
Gong
,
S.
Wang
,
D.
Moses
,
G. C.
Bazan
, and
A. J.
Heeger
,
Adv. Mater. (Weinheim, Ger.)
17
,
2053
(
2005
).
5.
J.
Liu
,
Z. Y.
Xie
,
Y. X.
Cheng
,
Y. H.
Geng
,
L. X.
Wang
,
X. B.
Jing
, and
F. S.
Wang
,
Adv. Mater. (Weinheim, Ger.)
19
,
531
(
2007
).
6.
C.
Adachi
,
K.
Nagai
, and
N.
Tamoto
,
Appl. Phys. Lett.
66
,
2679
(
1995
).
7.
V. E.
Choong
,
S.
Shi
,
J.
Curless
,
C. L.
Shieh
,
H. C.
Lee
,
F.
So
,
J.
Shen
, and
J.
Yang
,
Appl. Phys. Lett.
75
,
172
(
1999
).
8.
Y. C.
Luo
,
H.
Aziz
,
Z. D.
Popovic
, and
G.
Xu
,
J. Appl. Phys.
101
,
034510
(
2007
).
9.
H.
Aziz
,
Z. D.
Popovic
, and
N. X.
Hu
,
Appl. Phys. Lett.
81
,
370
(
2002
).
10.
S. A.
VanSlyke
,
C. H.
Chen
, and
C. W.
Tang
,
Appl. Phys. Lett.
69
,
2160
(
1996
).
11.
S.
Tokito
,
H.
Tanaka
,
K.
Noda
,
A.
Okada
, and
Y.
Taga
,
Appl. Phys. Lett.
70
,
1929
(
1997
).
12.
D. F.
O’Brien
,
P. E.
Burrows
,
S. R.
Forrest
,
B. E.
Koene
,
D. E.
Loy
, and
M. E.
Thompson
,
Adv. Mater. (Weinheim, Ger.)
10
,
1108
(
1998
).
13.
I. D.
Parker
,
Y.
Cao
, and
C. Y.
Yang
,
J. Appl. Phys.
85
,
2441
(
1999
).
14.
G. C. M.
Silvestre
,
M. T.
Johnson
,
A.
Giraldo
, and
J. M.
Shannon
,
Appl. Phys. Lett.
78
,
1619
(
2001
).
15.
R.
Fletcher
,
M.
Radler
,
W.
Wu
,
M.
Bernius
,
J.
O’Brien
,
S.
Kaczan
, and
T.
Honeman
,
SID Int. Symp. Digest Tech. Papers
35
,
896
(
2004
).
16.
W.
Su
,
D.
Poplavskyy
,
F.
So
,
H.
Clearfield
,
D.
Welsh
, and
W.
Wu
,
SID Int. Symp. Digest Tech. Papers
36
,
1871
(
2005
).
17.
C. H.
Chuen
,
Y. T.
Tao
,
F. I.
Wu
, and
C. F.
Shu
,
Appl. Phys. Lett.
85
,
4609
(
2004
).
18.
Y. C.
Tsai
and
J. H.
Jou
,
Appl. Phys. Lett.
89
,
243521
(
2006
).
19.
B. D.
Chin
,
J. K.
Kim
, and
O. O.
Park
,
J. Phys. D: Appl. Phys.
40
,
4436
(
2007
).
20.
H.
Becker
,
E.
Breuning
,
A.
Falcou
,
S.
Heun
,
A.
Parham
,
H.
Spreitzer
,
P.
Stößel
, and
J.
Steiger
,
Flexible Electronics—Materials and Device Technology
,
Materials Research Society Symposia Proceedings
(
Materials Research Society
.
Pittsburgh
,
2003
).
21.
H.
Becker
,
K.
Treacher
,
H.
Spreitzer
,
A.
Falcou
,
A.
Büsing
, and
A.
Parham
, Patent No. WO 03/020790.
22.
A.
Parham
,
S.
Heun
,
A.
Falcou
,
A.
Büsing
,
J.
Pan
, and
H.
Becker
, Patent No. WO 05/104263.
23.
M. C.
Gather
,
A.
Köhnen
,
A.
Falcou
,
H.
Becker
, and
K.
Meerholz
,
Adv. Funct. Mater.
17
,
191
(
2007
).
24.
P. I.
Shih
,
Y. H.
Tseng
,
F. I.
Wu
,
A. K.
Dixit
, and
C. F.
Shu
,
Adv. Funct. Mater.
16
,
1582
(
2006
).
25.
D.
Buchhauser
,
C.
Heuser
,
A.
Hunze
,
H.
Becker
,
A.
Büsing
,
A.
Falcou
,
L.
Rau
,
S.
Vögele
, and
S.
Göttling
,
Proc. SPIE
5519
,
70
(
2004
).
26.
T.
Kreouzis
,
D.
Poplavskyy
,
S. M.
Tuladhar
,
M.
Campoy-Quiles
,
J.
Nelson
,
A. J.
Campbell
, and
D. D. C.
Bradley
,
Phys. Rev. B
73
,
235201
(
2006
).
27.
C.
Fery
,
B.
Racine
,
D.
Vaufrey
,
H.
Doyeux
, and
S.
Cina
,
Appl. Phys. Lett.
87
,
213502
(
2005
).
28.
R.
Meerheim
,
K.
Walzer
,
M.
Pfeiffer
, and
K.
Leo
,
Appl. Phys. Lett.
89
,
061111
(
2006
).
29.
D.
Raghavan
,
M.
VanLandingham
,
X.
Gu
, and
T.
Nguyen
,
Langmuir
16
,
9448
(
2000
).
30.
M.
Campoy-Quiles
,
P. G.
Etchegoin
, and
D. D. C.
Bradley
,
Phys. Rev. B
72
,
045209
(
2005
).
31.
J. S.
Kim
,
R. H.
Friend
,
I.
Grizzi
, and
J. H.
Burroughes
,
Appl. Phys. Lett.
87
,
023506
(
2005
).
32.
P.
Zacharias
,
M. C.
Gather
,
M.
Rojahn
,
O.
Nuyken
, and
K.
Meerholz
,
Angew. Chem.
46
,
4388
(
2007
).
33.
M. C.
Gather
,
R.
Jin
,
J. C.
deMello
,
D. D. C.
Bradley
, and
K.
Meerholz
,
Appl. Phys. B: Lasers Opt.
95
,
113
(
2009
).
34.
A.
Pitarch
,
K.
Meerholz
, and
D.
Hertel
,
Phys. Status Solidi B
245
,
814
(
2008
).
You do not currently have access to this content.