A physically rigorous computational algorithm is developed and applied to calculate subcontinuum thermal transport in structures containing semiconductor-gas interfaces. The solution is based on a finite volume discretization of the Boltzmann equation for gas molecules (in the gas phase) and phonons (in the semiconductor). A partial equilibrium is assumed between gas molecules and phonons at the interface of the two media, and the degree of this equilibrium is determined by the accommodation coefficients of gas molecules and phonons on either side of the interface. Energy balance is imposed to obtain a value of the interface temperature. The classic problem of temperature drop across a solid-gas interface is investigated with a simultaneous treatment of solid and gas phase properties for the first time. A range of transport regimes is studied, varying from ballistic phonon transport and free molecular flow to continuum heat transfer in both gas and solid. A reduced-order model is developed that captures the thermal resistance of the gas-solid interface. The formulation is then applied to the problem of combined gas-solid heat transfer in a two-dimensional nanoporous bed and the overall thermal resistance of the bed is characterized in terms of the governing parameters. These two examples exemplify the broad utility of the model in practical nanoscale heat transfer applications.

1.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
2.
M. S.
Dresselhaus
,
M. S.
Lin
,
T.
Koga
,
S. B.
Cronin
,
O.
Rabin
,
M. R.
Black
, and
G.
Dresselhaus
,
Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III
(
Academic
,
New York
,
2001
), Vol.
71
, pp.
1
121
.
3.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
CRC
,
Boca Raton
,
2005
).
4.
I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
Yu.
Jen-Kan
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature (London)
451
,
168
(
2007
).
5.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature (London)
451
,
163
(
2008
).
6.
Y.
Cui
,
Z.
Zhong
,
D.
Wang
,
W. U.
Wang
, and
C. M.
Lieber
,
Nano Lett.
3
,
149
(
2003
).
7.
A.
Javey
,
J.
Guo
,
Q.
Wang
,
M.
Lundstrom
, and
H.
Dai
,
Nature (London)
424
,
654
(
2003
).
8.
J.
Xu
and
T. S.
Fisher
,
Int. J. Heat Mass Transfer
49
,
1658
(
2006
).
9.
M. S.
Ivanov
and
S. F.
Gimelshein
,
Annu. Rev. Fluid Mech.
30
,
469
(
1998
).
10.
J. C.
Harley
,
Y.
Huang
,
H. H.
Bau
, and
J. N.
Zemel
,
J. Fluid Mech.
284
,
257
(
1995
).
11.
E. B.
Arkilic
,
K. S.
Breuer
, and
M. A.
Schmidt
,
J. Fluid Mech.
437
,
29
(
2001
).
12.
E. B.
Arkilic
,
K. S.
Breuer
, and
M. A.
Schmidt
,
J. Microelectromech. Syst.
6
,
167
(
1997
).
13.
X.
Guo
,
C.
Huang
,
A.
Alexeenko
, and
J.
Sullivan
,
J. Micromech. Microeng.
18
,
025034
, (
2008
).
14.
F.
Pan
,
J.
Kubby
,
E.
Peeters
,
A. T.
Tran
, and
S.
Mukherjee
,
J. Micromech. Microeng.
8
,
200
(
1998
).
15.
T.
Veijola
,
J. Micromech. Microeng.
14
,
1109
(
2004
).
16.
J.
Lee
,
T. L.
Wright
,
M. R.
Abel
,
E. O.
Sunden
,
A.
Marchenkov
,
S.
Graham
, and
W. P.
King
,
J. Appl. Phys.
101
,
014906
, (
2007
).
17.
B. A.
Nelson
and
W. P.
King
,
Applied Scanning Probe Methods IV
(
Springer-Verlag
,
New York
,
2006
).
18.
W. P.
King
and
K. E.
Goodson
,
ASME J. Heat Transfer
124
,
597
(
2002
).
19.
A. A.
Alexeenko
,
D. A.
Fedosov
,
S. F.
Gimelshein
,
D. A.
Levin
, and
R. J.
Collins
,
J. Microelectromech. Syst.
15
,
181
(
2006
).
20.
V.
Bahadur
,
J.
Xu
,
Y.
Liu
, and
T. S.
Fisher
,
ASME J. Heat Transfer
127
,
164
(
2005
).
21.
22.
R.
Prasher
and
P.
Phelan
,
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Chicago, Illinois, 5–10 November
2006
(unpublished).
23.
D.
Singh
,
T. S.
Fisher
, and
J. Y.
Murthy
,
Proceedings of the ASME InterPACK
, Vancouver, British Columbia, Canada, 8–12 July
2007
(unpublished).
25.
G.
Pham-Van-Diep
,
P.
Keeley
,
E. P.
Muntz
, and
D. P.
Weaver
,
Rarefied Gas Dynamics
(
Oxford University Press
,
Oxford
,
1995
), pp.
715
721
.
26.
S. K.
Loyalka
,
Phys. Fluids
12
,
2301
(
1969
).
27.
Y. -L.
Han
,
E. P.
Muntz
,
A.
Alexeenko
, and
M.
Young
,
Nanoscale Microscale Thermophys. Eng.
11
,
151
(
2007
).
28.
J. Y.
Murthy
,
S. V. J.
Narumanchi
,
J. A.
Pascual-Gutierrez
,
T.
Wang
,
C.
Ni
, and
S. R.
Mathur
,
Int. J. Multiscale Comp. Eng.
3
,
5
(
2005
).
30.
R.
Yang
and
G.
Chen
,
Phys. Rev. B
69
,
195316
(
2004
).
31.
C.
Dames
and
G.
Chen
,
J. Appl. Phys.
95
,
682
(
2004
).
32.
J.
Zou
and
A.
Balandin
,
J. Appl. Phys.
89
,
2932
(
2001
).
33.
N.
Mingo
,
L.
Yang
,
D.
Li
, and
A.
Majumdar
,
Nano Lett.
3
,
1713
(
2003
).
34.
W.
Zhang
,
N.
Mingo
, and
T. S.
Fisher
,
ASME J. Heat Transfer
129
,
483
(
2007
).
35.
N.
Mingo
and
L.
Yang
,
Phys. Rev. B
68
,
245406
(
2003
).
36.
J. R.
Lukes
and
H.
Zhong
,
ASME J. Heat Transfer
129
,
705
(
2007
).
37.
S.
Maruyama
,
Nanoscale Microscale Thermophys. Eng.
7
,
41
(
2003
).
38.
A. J. H.
McGaughey
and
M.
Kaviany
,
Adv. Heat Transfer
39
,
169
(
2006
).
39.
A.
Henry
and
G.
Chen
,
J. Comput. Theor. Nanoscience
5
,
141
(
2008
).
40.
D. A.
Broido
,
A.
Ward
, and
N.
Mingo
,
Phys. Rev. B
72
,
014308
(
2005
).
41.
D. A.
Broido
,
M.
Malorny
,
G.
Birner
,
N.
Mingo
, and
D. A.
Stewart
,
Appl. Phys. Lett.
91
,
231922
(
2007
).
42.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
New York
,
1994
).
43.
L.
Mieussens
and
H.
Struchtrup
,
Phys. Fluids
16
,
2797
(
2004
).
44.
L.
Mieussens
,
J. Comput. Phys.
162
,
429
(
2000
).
45.
L.
Mieussens
,
Math. Models Meth. Appl. Sci.
10
,
1121
(
2000
).
46.
P.
Andries
,
B.
Perthame
,
P.
Le Tallec
, and
J. P.
Perlat
,
Eur. J. Mech. B/Fluids
19
,
813
(
2000
).
47.
J. A.
Pascual-Gutiérrez
,
J. Y.
Murthy
, and
R.
Viskanta
,
J. Appl. Phys.
102
,
034315
(
2007
).
48.
P.
Andries
,
J. F.
Bourgat
,
P.
Le Tallec
, and
B.
Perthame
,
Comput. Methods Appl. Mech. Eng.
191
,
3369
(
2002
).
49.
W. J.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Wiley
,
New York
,
1965
).
50.
C.
Cercignani
,
Rarefied Gas Dynamics
(
Cambridge University Press
,
Cambridge, England
,
2000
).
51.
52.
M. F.
Modest
,
Radiative Heat Transfer
(
McGraw-Hill
,
New York
,
1993
).
53.
M.
Gad-el-Hak
,
The MEMS Handbook
, 1st ed. (
CRC
,
Boca Raton
,
2001
).
54.
D. C.
Wadsworth
,
Phys. Fluids A
5
,
1831
(
1993
).
55.
M. A.
Gallis
,
W. M.
Trott
,
J. R.
Torczynski
, and
D. J.
Rader
,
Proceedings of the 59th Annual Meeting of the APS Division of Fluid Dynamics
, Tampa Bay, Florida,
2006
(unpublished).
56.
F. O.
Goodman
,
Prog. Surf. Sci.
5
,
261
(
1974
).
57.
C. W.
Muhlhausen
,
L. B.
Williams
, and
J. C.
Tully
,
J. Chem. Phys.
83
,
2594
(
1985
).
58.
F.
Sharipov
,
Eur. J. Mech. B/Fluids
22
,
133
(
2003
).
59.
C.
Cercignani
and
M.
Lampis
,
Transp. Theory Stat. Phys.
1
,
101
(
1971
).
60.
E. T.
Schwartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
61.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Appl. Phys. Lett.
80
,
2484
(
2004
).
62.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
J. Appl. Phys.
95
,
6082
(
2004
).
63.
A.
Maali
and
B.
Bhushan
,
Phys. Rev. E
78
,
027302
(
2008
).
64.
R.
Prasher
,
Phys. Rev. B
74
,
165413
(
2006
).
65.
F. P.
Incropera
,
D. P.
Dewitt
,
T. L.
Bergman
, and
A. S.
Levine
,
Introduction to Heat Transfer
, 5th ed. (
Wiley
,
New York
,
2006
).
66.
M. N.
Kogan
,
Rarefied Gas Dynamics
(
Plenum
,
New York
,
1969
).
67.
K. J.
Daun
,
G. J.
Smallwood
, and
F.
Liu
,
ASME J. Heat Transfer
130
,
121201
(
2008
).
68.
S. R.
Mathur
and
J. Y.
Murthy
,
ASME J. Heat Transfer
124
,
1176
(
2002
).
You do not currently have access to this content.