As microsystems grow in their complexity, the number of material layers increases even as the thickness of these layers decreases. As a consequence, energetic transport through material intersections, the so-called thermal boundary conductance (TBC), becomes a greater contributor to the total thermal response of the system as a whole. Consequently, methods are sought that allow for insight into the mechanisms determining the efficiency of this transport, while simultaneously providing predictions with minimal computational investiture. In response, the current study extends the often employed diffuse mismatch model (DMM) to account for disorder that is frequently present in the materials making up the interface as well as the boundary itself. By applying assumptions regarding the scattering rates and mean free paths of phonons within a disordered solid, the resulting modifications of the spectral density of states induce changes in both the number and ratio of forward scattered phonons incident on a surface, and hence predictions of the TBC. Combining these assumptions with an accounting of the distance over which disorder persists, the newly implemented disorder DMM (δ-DMM) is shown to be more capable of predicting the TBC over a range of temperatures and material systems. Additionally, the model demonstrates that TBC is dependent on not only on the material properties but also on the morphology of these materials and the nature of their union.

1.
C.
Dames
and
G.
Chen
,
J. Appl. Phys.
95
,
682
(
2004
).
2.
K. A.
Filippov
and
A. A.
Balandin
,
MRS Internet J. Nitride Semicond. Res.
8
,
8
(
2003
).
3.
B. A.
Cola
,
J.
Xu
, and
T. S.
Fisher
,
Int. J. Heat Mass Transfer
52
,
3490
(
2009
).
4.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
5.
Z.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw-Hill Professional
,
New York
,
2007
).
6.
R. M.
Costescu
,
M. A.
Wall
, and
D. G.
Cahill
,
Phys. Rev. B
67
,
054302
(
2003
).
7.
P. M.
Norris
and
P. E.
Hopkins
,
J. Heat Transfer
131
,
043207
(
2009
).
8.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
9.
T.
Beechem
,
A.
Christensen
,
S.
Graham
, and
D.
Green
,
J. Appl. Phys.
103
,
124501
(
2008
).
10.
V. O.
Turin
and
A. A.
Balandin
,
Electron. Lett.
40
,
81
(
2004
).
11.
C.
Zhu
,
Y.-G.
Zhang
,
A.-Z.
Li
, and
Z.-B.
Tian
,
J. Appl. Phys.
100
,
053105
(
2006
).
12.
R.
Stevens
,
A.
Smith
, and
P.
Norris
,
J. Heat Transfer
127
,
315
(
2005
).
13.
Y. K.
Koh
and
D. G.
Cahill
,
Phys. Rev. B
76
,
075207
(
2007
).
14.
P. E.
Hopkins
and
P. M.
Norris
,
J. Heat Transfer
131
,
022402
(
2009
).
15.
E. T.
Swartz
and
R. O.
Pohl
,
Appl. Phys. Lett.
51
,
2200
(
1987
).
16.
P. E.
Hopkins
,
P. M.
Norris
,
R. J.
Stevens
,
T. E.
Beechem
, and
S.
Graham
,
J. Heat Transfer
130
,
062402
(
2008
).
17.
P. E.
Phelan
,
ASME Trans. J. Heat Transfer
120
,
37
(
1998
).
18.
P.
Reddy
,
K.
Castelino
, and
A.
Majumdar
,
Appl. Phys. Lett.
87
,
211908
(
2005
).
19.
P. E.
Hopkins
,
J. Appl. Phys.
106
,
013528
(
2009
).
20.
T.
Beechem
,
S.
Graham
,
P.
Hopkins
, and
P.
Norris
,
Appl. Phys. Lett.
90
,
054104
(
2007
).
21.
M.
Kawamura
,
Y.
Abe
, and
K.
Sasaki
,
Thin Solid Films
515
,
540
(
2006
).
22.
A.
Misra
and
M.
Nastasi
,
Appl. Phys. Lett.
75
,
3123
(
1999
).
23.
M.
Ohring
,
The Materials Science of Thin Films: Deposition and Structure
(
Academic
,
New York
,
2002
).
24.
H. G.
Tompkins
,
S.
Taskic
,
J.
Baker
, and
D.
Convey
,
Surf. Interface Anal.
29
,
179
(
2000
).
25.
D. G.
Cahill
and
R. O.
Pohl
,
Solid State Commun.
70
,
927
(
1989
).
26.
A.
Einstein
,
Ann. Phys.
35
,
679
(
1911
).
27.
P. E.
Hopkins
and
T.
Beechem
(unpublished).
28.
P. E.
Hopkins
and
E. S.
Piekos
,
Appl. Phys. Lett.
94
,
181901
(
2009
).
29.
B.
Gundrum
,
D. G.
Cahill
, and
R. S.
Averback
,
Phys. Rev. B
72
,
245426
(
2005
).
30.
G.
Chen
,
Nanoscale Energy Transport and Conversion
(
Oxford University Press
,
New York, NY
,
2005
).
31.
A.
Majumdar
,
J. Heat Transfer
115
,
7
(
1993
).
32.
P. E.
Hopkins
,
P. M.
Norris
, and
R. J.
Stevens
,
J. Heat Transfer
130
,
022401
(
2008
).
33.

The directional dependence of the TBC implies that the interfacial resistance may lead to some level of thermal rectification. A discussion of this boundary induced rectification along with a quantification of its magnitude is given is given by Ref. 34.

34.
C.
Dames
,
J. Heat Transfer
131
,
061301
(
2009
).
35.

This assumption by no means implies that all metal films should be considered as highly disordered. Rather, by considering extreme disorder, the model takes the limit opposite that of the DMM in which the materials are considered perfectly crystalline, thereby allowing for a bounding for each of the material limits.

36.
A.
Majumdar
and
P.
Reddy
,
Appl. Phys. Lett.
84
,
4768
(
2004
).
37.
J. L.
Hostetler
,
A. N.
Smith
,
D. M.
Czajkowsky
, and
P.
Norris
,
Appl. Opt.
38
,
3614
(
1999
).
38.
39.
V.
Lysenko
,
S.
Périchon
,
B.
Remaki
, and
D.
Barbier
,
Sens. Actuators, A
99
,
13
(
2002
).
40.
D. E.
Gray
,
American Institute of Physics Handbook
(
McGraw-Hill
,
New York
,
1972
).
41.
X.-G.
Yu
and
X.-G.
Liang
,
Diamond Relat. Mater.
16
,
1711
(
2007
).
You do not currently have access to this content.