We report on the surface nanostructuring of silicon wafer by self-organization of redeposited Si nanoparticles, at various energy levels, in the vaporization regime of laser-matter interaction. By using the semiconfined configuration, a quasi-two-dimensional turbulent Si vapor field with gradients of pressure and temperature is formed. The turbulent field evolves into point vortices which condense into Si nanodroplets. At a low laser energy of 1.2J(0.23GW/cm2), the inertial instability of nanodroplets under gradients of pressure and temperature, cause their intermittent accumulation in the low-pressure regions of turbulent field. The solidification of Si nanodroplets into particles and their redeposition, cause a simple two-dimensional low density nanostructuring of Si wafer in the near periphery region, and a high density nanostructuring in the periphery region of the spot. The pattern of redeposited Si nanoparticles in these regions is equivalent to the pattern of point vortices in a two-dimensional turbulent field. Such a pattern of point vortices is obtained by numerical simulation from the two-dimensional Navier–Stokes equation for forced turbulence. The self-organization of the coherent point vortex pattern is generated by numerical simulation of the solitary turbulence model based on the nonlinear Schrödinger equation. At the high laser energy of 1.5 and 2.0J (0.42 and 0.52GW/cm2, respectively), the transition from simple intermittent two-dimensional nanoparticle organization into a continuous and more complex one takes place. The nanostructured pattern shows a continuous distribution of Si particles, whose size increases from the periphery toward the center without spatial intermittency, showing a gradient of particle size. In addition, the open and closed loops chain clusters appear, with morphology and fractal dimension similar to the chain clusters which grow according to the Meakin–Jullien model of cluster-cluster aggregation. At the higher power density of 0.52GW/cm2, the chain clusters become connected and tend to compactification. They form a network similar to the one obtained by numerical simulation of two-dimensional turbulence at small Stokes numbers. The silicon surface nanostructured by recondensation in this case comprises only the nanometer sized particles.

1.
M.
Castro
,
R.
Cuerno
,
L.
Vazquez
, and
R.
Gago
,
Phys. Rev. Lett.
94
,
016102
(
2005
).
2.
M.
Milan
and
H. J.
Laserna
,
Spectrochim. Acta, Part B
56
,
275
(
2001
).
3.
J. H.
Yoo
,
S. H. J.
Jeong
,
R.
Greif
, and
R. E.
Russo
,
Appl. Phys. (Berlin)
88
,
1638
(
2000
).
4.
J. H.
Yoo
,
S. H.
Jeong
,
X. L.
Mao
,
R.
Greif
, and
R. E.
Russo
,
Appl. Phys. Lett.
76
,
783
(
2000
).
5.
J. H.
Yoo
,
S. H.
Jeong
,
X. L.
Mao
,
R.
Greif
, and
R. E.
Russo
,
Appl. Phys. Lett.
79
,
444
(
2001
).
6.
V.
Narayanan
and
R. K.
Thareya
,
Appl. Surf. Sci.
222
,
382
(
2004
).
7.
S. I.
Dolgaev
,
A. V.
Simakin
,
V. V.
Voronov
,
G. A.
Shafeev
, and
F.
Bozon-Verdaux
,
Appl. Surf. Sci.
186
,
546
(
2002
).
8.
D.
Jones
and
V.
Palermo
,
Appl. Phys. Lett.
80
,
673
(
2002
).
9.
T.
Yoshitake
and
K.
Nagayama
,
Vacuum
74
,
515
(
2004
).
10.
T.
Yoshitake
,
G.
Shiraishi
, and
K.
Nagayama
,
Appl. Surf. Sci.
197–198
,
379
(
2002
).
11.
D.
Takeuchi
,
T.
Mizuta
,
T.
Makimura
,
S.
Yoshida
,
M.
Fujita
,
K.
Hata
,
M.
Hshigekawa
, and
K.
Murakami
,
Appl. Surf. Sci.
197–198
,
674
(
2002
).
12.
V.
Craciun
,
D.
Craciun
,
M. C.
Bunescu
,
C. B.
Leburgue
, and
J.
Hermann
,
Phys. Rev. B
58
,
6787
(
1998
).
13.
V.
Craciun
,
Appl. Phys. Lett.
79
,
442
(
2001
).
14.
P. N.
Barnes
,
P. T.
Murray
,
T.
Haugan
,
R.
Rogov
, and
G. P.
Perram
,
Physica C
377
,
578
(
2002
).
15.
D. B.
Geohegan
,
Appl. Phys. Lett.
62
,
1463
(
1993
).
16.
H. G.
Boyen
,
A.
Ethirajan
,
G.
Kastle
,
F.
Weigl
,
P.
Zimermann
,
G.
Schmid
,
M. G.
Garnier
,
M.
Buttner
, and
P.
Oelhafen
,
Phys. Rev. Lett.
94
,
016804
(
2005
).
17.
S. S.
Harilal
,
C. V.
Bindhu
,
M. S.
Tillack
,
F.
Namabadi
, and
A. C.
Gaeris
,
J. Appl. Phys.
102
,
123306
(
2007
).
18.
J. -G.
Fan
,
X. -J.
Tang
, and
Y. -P.
Zhao
,
Nanotechnology
15
,
501
(
2004
).
19.
T. S.
Kim
,
W.
Sun
,
C. -J.
Choi
, and
B. -T.
Lee
,
Rev. Adv. Mater. Sci.
5
,
481
(
2003
).
20.
A.
Yanguas-Gil
,
J.
Cotrino
,
A.
Barranco
, and
A. R.
Gonzales-Felipe
,
Phys. Rev. Lett.
96
,
236101
(
2006
).
21.
A. I.
Okano
and
K. J.
Tyakayanagi
,
Appl. Phys. (Berlin)
86
,
3964
(
1999
).
22.
S. -B.
Wen
,
X.
Mao
,
R.
Greif
, and
R. E.
Russo
,
J. Appl. Phys.
101
,
023114
(
2007
).
23.
D.
Bleiner
and
P.
Gasser
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1019
(
2002
).
24.
A. V.
Pakhomov
,
M. S.
Thomson
, and
D. A.
Gregory
,
J. Phys. D: Appl. Phys.
36
,
2067
(
2003
).
25.
J.
Muramoto
,
Y.
Nakata
,
T.
Okada
, and
M.
Maeda
,
Appl. Surf. Sci.
127–129
,
373
(
1998
).
26.
S.
Decossas
,
L.
Patrone
,
A. M.
Bonnot
,
F.
Comin
,
M.
Derivaz
,
A.
Barski
, and
J.
Chevrier
,
Surf. Sci.
543
,
57
(
2003
).
27.
V. V.
Tsukruk
,
H.
Ko
, and
S.
Peleshanko
,
Phys. Rev. Lett.
92
,
065502
(
2004
).
28.
R. A.
Ikeda
and
C. C.
Richardson
,
J. Biol. Chem.
262
,
3790
(
1987
).
29.
G. M.
Whitesides
,
J. P.
Mathias
, and
C. T.
Seto
,
Science
254
,
1312
(
1991
).
30.
B.
Holzapfel
,
B.
Roas
,
L.
Shultz
,
P.
Bauer
, and
G. S.
Ischenko
,
Appl. Phys. Lett.
61
,
3178
(
1992
).
31.
D. B.
Chrisey
and
G. K.
Hubler
,
Pulsed Laser Deposition of Thin Films
(
Wiley-Interscience
,
New York
,
1994
).
32.
S.
Lugomer
(in press).
33.
G.
Falkovich
,
A.
Fuxon
, and
M. G.
Stepanov
,
Nature (London)
419
,
151
(
2002
).
34.
A.
Celani
,
G.
Falkovich
,
A.
Mazzino
, and
A.
Seminara
,
Europhys. Lett.
70
,
775
(
2005
).
35.
L. R.
Collins
and
A.
Keswani
,
New J. Phys.
6
,
119
(
2004
).
36.
B.
Legras
,
P.
Santangelo
, and
R.
Benzi
,
Europhys. Lett.
5
,
37
(
1988
).
37.
R.
Benzi
,
G.
Paladin
,
S.
Patarnello
, and
A.
Vulpiani
,
J. Phys. A
19
,
3771
(
1986
).
38.
R.
Benzi
,
S.
Patarnello
, and
P.
Santangelo
,
J. Phys. A
21
,
1221
(
1988
).
40.
Y.
Yatsuyanagi
,
Y.
Kiwamoto
,
H.
Tomita
,
M. M.
Sano
, and
T.
Yosida
,
Phys. Rev. Lett.
94
,
054502
(
2005
).
41.
K.
Ohkitani
,
Phys. Fluids A
3
,
1598
(
1991
).
42.
A. I.
Dyachenko
,
V. E.
Zakharov
,
A. N.
Pushkarev
,
V. E.
Shvets
, and
V. V.
Yan’kov
,
Zh. Eksp. Teor. Fiz.
96
,
2026
(
1989
).
43.
R.
Jordan
and
C.
Joserand
,
Phys. Rev. E
61
,
1527
(
2000
).
44.
The buffer gas has not been used in the SCC channel in order to avoid collisional effects of Si atoms and molecules with He or Ar atoms. These collisions at an unknown frequency could influence the evolution of the turbulent vapor field and introduce the unknown behavior.
45.
Widely used excimer UV lasers cause ionization of vaporized Si atoms and formation of Coulomb nanoparticles. The mutual interaction of charged nanoparticles in the plasma (colloidal plasma) may affect local turbulent field, as well as the particle accumulation.
46.
Time resolved measurements have shown that monoatomic species have relatively small velocity 200500m/s (Refs. 15 and 24). The clusters and microparticles generated by the phase explosion of the superheated surface layer in the ablation regime reach an 10 times higher velocity of 16km/s.
47.
S.
Ayyalasomayajula
,
A.
Gylfason
,
L. R.
Collins
,
E.
Bodenschatz
, and
Z.
Warhaft
,
Phys. Rev. Lett.
97
,
144507
(
2006
).
48.
A.
La Porta
,
G. A.
Vopth
,
A. M.
Crawford
,
J.
Alexander
, and
E.
Bodenschatz
,
Nature (London)
409
,
1017
(
2001
).
49.
E.
Kuznetsov
,
A. C.
Newell
, and
V. E.
Zakharov
,
Phys. Rev. Lett.
67
,
3243
(
1991
).
50.
V.
Yakhot
,
Phys. Rev. E
60
,
5544
(
1999
).
51.
E.
Balkovsky
,
G.
Falkovich
, and
A.
Fouxon
,
Phys. Rev. Lett.
86
,
2790
(
2001
).
52.
T.
Elperin
,
N.
Kleeorin
, and
I.
Rogachewskii
,
Phys. Rev. Lett.
76
,
224
(
1996
).
53.
V.
Yakhot
and
J.
Wanderer
,
Phys. Rev. Lett.
93
,
154502
(
2004
).
54.
G.
Boffetta
,
A.
Celani
, and
M.
Vergassola
,
Phys. Rev. E
61
,
R29
(
2000
).
55.
J.
Paret
and
P.
Tabeling
,
Phys. Fluids
10
,
3126
(
1998
).
56.
T.
Elperin
,
N.
Kleeorin
, and
I.
Rogachewskii
,
Phys. Rev. Lett.
77
,
5373
(
1996
).
57.
The velocity of Si particles, Up formed by condensation of the point vortices in the vapor flow field is equal to the Si vapor velocity, Uv ranging from 100 to 300 m/s. (Notice the contrast to the velocity of microparticles generated by the phase explosion and ejection in the ablation regime at the very high power density).
58.
We assumed that coefficient of molecular diffusion DM of Si atoms and Si2 molecules is of the order of DM of H2O molecules in vapor.
59.
Nonlinear Schrödinger Equation with a Power-law Nonlinearity
” (http://eqworld.ipmnet.ru/en/solutions/npde/npde1402.pdf) at EqWorld: The World of Mathematical Equations.
61.
P.
Meakin
and
R.
Jullien
,
J. Phys. (Paris)
46
,
1543
(
1985
).
62.
M.
Small
,
Applied Nonlinear Time Series Analysis
(
World Scientific
,
Singapore
,
2005
), Vol.
2
.
63.
G.
Boffeta
,
F.
De Lillo
, and
A.
Gamba
,
Phys. Fluids
16
,
L20
(
2004
);
G.
Boffeta
,
F.
De Lillo
, and
A.
Gamba
, arXiv:nlin-sys/0310029v1,
2003
.
You do not currently have access to this content.