A new model is developed that accounts for multiple phonon processes on interface transmission between two solids. By considering conservation of energy and phonon population, the decay of a high energy phonon in one material into several lower energy phonons in another material is modeled assuming diffuse scattering. The individual contributions of each of the higher order inelastic phonon processes to thermal boundary conductance are calculated and compared to the elastic contribution. The overall thermal boundary conductance from elastic and inelastic (three or more phonon processes) scattering is calculated and compared to experimental data on five different interfaces. Improvement in value and trend is observed by taking into account multiple phonon inelastic scattering. Three phonon interfacial processes are predicted to dominate the inelastic contribution to thermal boundary conductance.

1.
P. L.
Kapitza
,
Zh. Eksp. Teor. Fiz. Pis'ma Red.
11
,
1
(
1941
).
2.
R. S.
Prasher
,
Phys. Rev. B
77
,
075424
(
2008
).
3.
S. -M.
Lee
,
D. G.
Cahill
, and
R.
Venkatasubramanian
,
Appl. Phys. Lett.
70
,
2957
(
1997
).
4.
D.
Li
,
Y.
Wu
,
R.
Fan
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
3186
(
2003
).
5.
B. C.
Gundrum
,
D. G.
Cahill
, and
R. S.
Averback
,
Phys. Rev. B
72
,
245426
(
2005
).
6.
P. E.
Hopkins
,
R. J.
Stevens
, and
P. M.
Norris
,
ASME J. Heat Transfer
130
,
022401
(
2008
).
7.
H. -K.
Lyeo
and
D. G.
Cahill
,
Phys. Rev. B
73
,
144301
(
2006
).
8.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
9.
C. W.
Chang
,
D.
Okawa
,
H.
Garcia
,
A.
Majumdar
, and
A.
Zettl
,
Phys. Rev. Lett.
101
,
075903
(
2008
).
10.
E. T.
Swartz
and
R. O.
Pohl
,
Appl. Phys. Lett.
51
,
2200
(
1987
).
11.
R. M.
Costescu
,
M. A.
Wall
, and
D. G.
Cahill
,
Phys. Rev. B
67
,
054302
(
2003
).
12.
Y. K.
Koh
and
D. G.
Cahill
,
Phys. Rev. B
76
,
075207
(
2007
).
13.
P. E.
Hopkins
,
P. M.
Norris
,
R. J.
Stevens
,
T.
Beechem
, and
S.
Graham
,
ASME J. Heat Transfer
130
,
062402
(
2008
).
14.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
,
ASME J. Heat Transfer
127
,
315
(
2005
).
15.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
16.
P. E.
Phelan
,
ASME J. Heat Transfer
120
,
37
(
1998
).
17.
P.
Reddy
,
K.
Castelino
, and
A.
Majumdar
,
Appl. Phys. Lett.
87
,
211908
(
2005
).
18.
A.
Majumdar
and
P.
Reddy
,
Appl. Phys. Lett.
84
,
4768
(
2004
).
19.
T. E.
Beechem
,
S.
Graham
,
P. E.
Hopkins
, and
P. M.
Norris
,
Appl. Phys. Lett.
90
,
054104
(
2007
).
20.
R. S.
Prasher
and
P. E.
Phelan
,
ASME J. Heat Transfer
123
,
105
(
2001
).
21.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
22.
M. L.
Huberman
and
A. W.
Overhauser
,
Phys. Rev. B
50
,
2865
(
1994
).
23.
A. V.
Sergeev
,
Phys. Rev. B
58
,
R10199
(
1998
).
24.
A. V.
Sergeev
,
Physica B
263–264
,
217
(
1999
).
25.
Y.
Chen
,
D.
Li
,
J.
Yang
,
Y.
Wu
,
J.
Lukes
, and
A.
Majumdar
,
Physica B
349
,
270
(
2004
).
26.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
,
Int. J. Heat Mass Transfer
50
,
3977
(
2007
).
27.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
Wiley
,
New York
,
1996
).
28.
P. G.
Klemens
,
Phys. Rev.
148
,
845
(
1966
).
29.
G.
Chen
,
Phys. Rev. B
57
,
14958
(
1998
).
30.
C.
Dames
and
G.
Chen
,
J. Appl. Phys.
95
,
682
(
2004
).
31.
P. E.
Hopkins
and
P. M.
Norris
,
Nanoscale Microscale Thermophys. Eng.
11
,
247
(
2007
).
32.
Y. A.
Kosevich
,
Phys. Rev. B
52
,
1017
(
1995
).
33.
P. E.
Hopkins
and
P. M.
Norris
,
J. Heat Transfer
131
,
022402
(
2009
).
34.
G.
Chen
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(
Oxford University Press
,
New York
,
2005
).
35.
Z.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw-Hill
,
New York
,
2007
).
36.
D. E.
Gray
,
American Institute of Physics Handbook
, 3rd ed. (
McGraw-Hill
,
New York
,
1972
).
37.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
,
Phys. Rev. B
28
,
1928
(
1983
).
38.
K.
Oura
,
V. G.
Lifshits
,
A. A.
Saranin
,
A. V.
Zotov
, and
M.
Katayama
,
Surf. Sci. Rep.
35
,
1
(
1999
).
39.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Appl. Phys. Lett.
80
,
2484
(
2002
).
40.
R. Q.
Fugate
and
C. A.
Swenson
,
J. Appl. Phys.
40
,
3034
(
1969
).
41.
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
,
Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
(
Wiley-Interscience
,
New York
,
2001
).
You do not currently have access to this content.