The electrical activation and clustering of Ga implanted in crystalline Ge was investigated in the (0.31.2)×1021Ga/cm3 concentration range. To this aim, Ge samples implanted with 50 keV gallium, and annealed at several temperatures up to 650°C, have been subjected to a detailed structural and electrical characterization. The substrate was maintained at 77 K during implantation to avoid the formation of the honeycomb structure that occurs during implantation at room temperature of heavy ions at high fluence. Secondary ion mass spectrometry analyses indicated a negligible Ga diffusion and dopant loss during the thermal annealing. The carrier concentration in the recrystallized samples measured by Hall effect showed a maximum concentration of active Ga of 6.6×1020Ga/cm3. A remarkable Ga deactivation occurred with increasing the annealing temperature from 450 to 650°C although the sheet resistance did not change considerably in this temperature range. It turned out that the carrier concentration reduction is balanced by the enhancement of the hole mobility that exhibits a steep variation with the concentration of the ionized scattering centers in this range. A simple model is proposed to explain the experimental results taking into account the thermally activated Ga clustering. These studies, besides clarifying the mechanism of Ga deactivation in Ge, can be helpful for the realization of future generation devices based on Ge.

1.
C.
Claeys
and
E.
Simoen
,
Germanium-Based Technologies—From Materials to Devices
(
Elsevier
,
Amsterdam
,
2007
).
2.
S. M.
Sze
and
J. C.
Irvin
,
Solid-State Electron.
11
,
599
(
1968
).
3.
W. C.
Dunlap
, Jr.
,
Phys. Rev.
94
,
1531
(
1954
).
4.
S.
Uppal
,
A. F. W.
Willoughby
,
J. M.
Bonar
,
A. G. R.
Evans
,
N. E. B.
Cowern
,
R.
Morris
, and
M. G.
Dowsett
,
J. Appl. Phys.
90
,
4293
(
2001
).
5.
S.
Uppal
,
A. F. W.
Willoughby
,
J. M.
Bonar
,
N. E. B.
Cowern
,
T.
Grasby
,
R. J. H.
Morris
, and
M. G.
Dowsett
,
J. Appl. Phys.
96
,
1376
(
2004
).
6.
Y. -L.
Chao
,
S.
Prussin
,
J. C. S.
Woo
, and
R.
Scholz
,
Appl. Phys. Lett.
87
,
142102
(
2005
).
7.
A.
Satta
,
E.
Simoen
,
T.
Clarisse
,
T.
Janssens
,
A.
Benedetti
,
B.
De Jaeger
,
M.
Meuris
, and
W.
Vandervorst
,
Appl. Phys. Lett.
87
,
172109
(
2005
).
8.
Y. S.
Suh
,
M. S.
Carroll
,
R. A.
Levy
,
G.
Bisognin
,
D.
De Salvador
,
M. A.
Sahiner
, and
C. A.
King
,
IEEE Trans. Electron Devices
52
,
2416
(
2005
).
9.
S.
Mirabella
,
G.
Impellizzeri
,
A. M.
Piro
,
E.
Bruno
, and
M. G.
Grimaldi
,
Appl. Phys. Lett.
92
,
251909
(
2008
).
10.
G.
Impellizzeri
,
S.
Mirabella
,
E.
Bruno
,
A. M.
Piro
, and
M. G.
Grimaldi
,
J. Appl. Phys.
105
,
063533
(
2009
).
11.
I. H.
Wilson
,
J. Appl. Phys.
53
,
1698
(
1982
).
12.
O. W.
Holland
,
B. R.
Appleton
, and
J.
Narayan
,
J. Appl. Phys.
54
,
2295
(
1983
).
13.
H.
Huber
,
W.
Assmann
,
S. A.
Karamian
,
A.
Mücklich
,
W.
Prusseit
,
E.
Gazis
,
G.
Grötzschel
,
M.
Kokkoris
,
E.
Kossionidis
,
H. D.
Mieskes
, and
R.
Vlastou
,
Nucl. Instrum. Methods Phys. Res. B
122
,
542
(
1997
).
14.
B.
Stritzker
,
R. G.
Elliman
, and
J.
Zou
,
Nucl. Instrum. Methods Phys. Res. B
175-177
,
193
(
2001
).
15.
T.
Janssens
,
C.
Huyghebaert
,
D.
Vanhaeren
,
G.
Winderickx
,
A.
Satta
,
M.
Meuris
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B
24
,
510
(
2006
).
16.
L.
Ottaviano
,
A.
Verna
,
V.
Grossi
,
P.
Parisse
,
S.
Piperno
,
M.
Passacantando
,
G.
Impellizzeri
, and
F.
Priolo
,
Surf. Sci.
601
,
2623
(
2007
).
17.
S.
Koffel
,
P.
Scheiblin
,
A.
Claverie
, and
G.
Benassayag
,
J. Appl. Phys.
105
,
013528
(
2009
).
18.
U.
Södervall
,
H.
Odelius
,
A.
Lodding
,
U.
Roll
,
B.
Predel
,
W.
Gust
, and
P.
Dorner
,
Philos. Mag. A
54
,
539
(
1986
).
19.
M.
Friesel
,
U.
Södervall
, and
W.
Gust
,
J. Appl. Phys.
78
,
5351
(
1995
).
20.
I.
Riihimäki
,
A.
Virtanen
,
S.
Rinta-Anttila
,
P.
Pusa
,
J.
Räisänen
, and
The ISOLDE Collaboration
,
Appl. Phys. Lett.
91
,
091922
(
2007
).
21.
V. I.
Fistul
,
Impurities in Semiconductors: Solubility, Migration, and Interactions
(
CRC
,
Boca Raton, FL
,
2004
), p.
164
.
22.
E.
Simoen
,
A.
Satta
,
A.
D’Amore
,
T.
Janssens
,
T.
Clarysse
,
K.
Martens
,
B.
De Jaeger
,
A.
Benedetti
,
I.
Hoflijk
,
B.
Brijs
,
M.
Meuris
, and
W.
Vandervorst
,
Mater. Sci. Semicond. Process.
9
,
634
(
2006
).
23.
A.
Satta
,
E.
Simoen
,
T.
Janssens
,
T.
Clarisse
,
B.
De Jaeger
,
A.
Benedetti
,
I.
Hoflijk
,
B.
Brijs
,
M.
Meuris
, and
W.
Vandervorst
,
J. Electrochem. Soc.
153
,
G229
(
2006
).
24.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
,
Stopping and Ranges of Ions in Matter
Vol.
1
(
Pergamon
,
New York
,
1984
), see: http://www.srim.org.
25.
C.
Jasper
,
L.
Rubin
,
C.
Lindfors
,
K. S.
Jones
, and
J.
Oh
,
Proceedings of Ion Implantation Technique
(
IEEE
,
New York
,
2002
), p.
548
.
26.
R.
Lindsay
,
K.
Henson
,
W.
Vandervorst
,
K.
Maex
,
B. J.
Pawlak
,
R.
Duffy
,
R.
Surdeanu
,
P.
Stolk
,
J. A.
Kittl
,
S.
Giangrandi
,
X.
Pages
, and
K.
Van der Jeugd
,
J. Vac. Sci. Technol. B
22
,
306
(
2004
).
27.
G.
Masetti
,
M.
Severi
, and
S.
Solmi
,
IEEE Trans. Electron Devices
30
,
764
(
1983
).
28.
O. A.
Golikova
,
B. Y.
Moizhez
, and
L. S.
Stilbans
,
Sov. Phys. Solid State
3
,
10
(
1962
).
You do not currently have access to this content.