ZnO nanostructures were grown via carbothermal reduction vapor phase transport with carbon black, activated carbon, and graphite powders. Nanostructures can be grown at significantly lower temperatures with carbon black and activated carbon, although with different morphologies compared to graphite. The surface areas of the carbon black and activated carbon are higher than those of graphite; this has been used previously to explain the origin of such growth and morphology differences. We use different ZnO∕graphite ratios to equalize surface areas compared to carbon black and eliminate this effect, but differences in nanostructure growth and morphology remain. We discuss the effects of thermodynamics and carbon purity and conclude that the high surface activities of the carbon black and activated carbon are the reason for our results.

1.
Z. L.
Wang
,
J. Phys.: Condens. Matter
16
,
R829
(
2004
).
2.
Z. L.
Wang
,
Mater. Today
7
,
26
(
2004
).
3.
P. D.
Yang
,
H.
Yan
,
S.
Mao
,
R.
Russo
,
J.
Johnson
,
R.
Saykally
,
N.
Morris
,
J.
Pham
,
R.
He
, and
H.-J.
Choi
,
Adv. Funct. Mater.
12
,
323
(
2002
).
4.
M. H.
Huang
,
Y. Y.
Wu
,
H.
Feick
,
N.
Tran
,
E.
Weber
, and
P. D.
Yang
,
Adv. Mater. (Weinheim, Ger.)
13
,
113
(
2001
).
5.
P. W.
Atkins
,
Physical Chemistry
, 5th ed. (
Oxford University Press
,
Oxford
,
1994
).
6.
C. G.
Maier
,
U.S. Bureau of Mines
, Bulletin No. 324,
1930
.
7.
J.-R.
Duclère
,
B.
Doggett
,
M. O.
Henry
,
E.
McGlynn
,
R. T.
Rajendra Kumar
,
J.-P.
Mosnier
,
A.
Perrin
, and
M.
Guilloux-Viry
,
J. Appl. Phys.
101
,
013509
(
2007
).
8.
Y. S.
Lim
,
J. W.
Park
,
M. S.
Kim
, and
J.
Kim
,
Appl. Surf. Sci.
253
,
1601
(
2006
).
9.
Y. H.
Leung
,
A. B.
Djurisic
,
J.
Gao
,
M. H.
Xie
,
Z. F.
Wei
,
S. J.
Xu
, and
W. K.
Chan
,
Chem. Phys. Lett.
394
,
452
(
2004
).
10.
G.
Gundiah
,
F. L.
Deepak
,
A.
Govindaraj
, and
C. N. R.
Rao
,
Top. Catal.
24
,
137
(
2003
).
11.
Y.
Hang Leung
,
A. B.
Djurisic
,
J.
Gao
,
M. H.
Xie
, and
W. K.
Chan
,
Chem. Phys. Lett.
385
,
155
(
2004
).
12.
M.
Biswas
,
E.
McGlynn
, and
M. O.
Henry
,
Microelectron. J.
40
,
259
(
2009
).
13.
F.
Rodríguez-Reinoso
,
Carbon
36
,
159
(
1998
) and references therein.
14.
H. J.
Fan
,
A. S.
Barnard
, and
M.
Zacharias
,
Appl. Phys. Lett.
90
,
143116
(
2007
).
15.
JCPDS Card No. 36-1451 (for ZnO);
JCPDS Card No. 46-1212 (for Al2O3).
16.
Y. S.
Lim
,
J. W.
Park
,
S. T.
Hong
, and
J.
Kim
,
Mater. Sci. Eng., B
129
,
100
(
2006
).
17.
P. J. F.
Harris
,
Crit. Rev. Solid State Mater. Sci.
30
,
235
(
2005
).
18.
J.-B.
Donnet
,
Carbon
32
,
1305
(
1994
).
19.
Glushko Thermocenter of the Russian Academy of Sciences in the IVTANTHERMO database and listed at; http://www.chem.msu.su/rus/tsiv/Zn/table.Zn.6.html.
20.
B. S.
Terry
and
X.
Yu
,
Ironmaking Steelmaking
18
,
27
(
1991
).
21.
J. S.
Speck
,
J. Appl. Phys.
67
,
495
(
1989
).
22.
S. K.
Das
and
E. E.
Hucke
,
Carbon
13
,
33
(
1975
).
23.
C.
Poleunis
,
X.
Vanden Eynde
,
E.
Grivei
,
H.
Smet
,
N.
Probst
, and
P.
Bertrand
,
Surf. Interface Anal.
30
,
420
(
2000
).
24.
A.
Schroeder
,
M.
Klueppel
, and
R. H.
Schuster
,
Macromol. Mater. Eng.
292
,
885
(
2007
).
25.
S.
Banerjee
,
T.
Hemraj-Benny
, and
S. S.
Wong
,
Adv. Mater. (Weinheim, Ger.)
17
,
17
(
2005
).
26.
R. T.
Rajendra Kumar
,
E.
McGlynn
,
C.
McLoughlin
,
S.
Chakrabarti
,
R. C.
Smith
,
J. D.
Carey
,
J. P.
Mosnier
, and
M. O.
Henry
,
Nanotechnology
18
,
215704
(
2007
).
You do not currently have access to this content.