Structural, mechanical, and dimensional evolutions of silicon carbide (SiC) induced by heavy-ion irradiations are studied by means of Rutherford backscattering spectrometry and channeling (RBS/C), nanoindentation, and surface profilometry measurements. 4H- and 6H-SiC single crystals were irradiated with 4 MeV Au2+ and 4 MeV Xe+ ions at room temperature (RT) or 400°C. Using a Monte Carlo program to simulate the RBS/C spectra (MCCHASY code), we find that Au ion irradiation at RT induces a total silicon sublattice disorder related to full amorphization at a dose of about 0.4 displacement per atom (dpa). A two-step damage process is found on the basis of the disordered fractions deduced from RBS/C data. Complete amorphization cannot be reached upon both Au and Xe ion irradiations at 400°C up to about 26 dpa because of the dynamic annealing of defects. When complete amorphization is reached at RT, the Young’s modulus and Berkovich hardness of irradiated 6H-SiC samples are lower by, respectively, 40% and 45% than those of the virgin crystals. The out-of-plane expansion measured by surface profilometry increases versus irradiation dose and the saturation value measured in the completely amorphous layer (normalized to the ion projected range) is close to 25%. We show that the modifications of the macroscopic properties are mainly due to the amorphization of the material. The macroscopic elasticity constants and dimensional properties are predicted for a composite material made of crystalline matrix containing dispersed amorphous inclusions using simple analytical homogenization models. Voigt’s model seems to give the best approximation for disordered fractions larger than 20% in the second step of the damage process.

1.
M. K.
Meyer
,
R.
Fielding
, and
J.
Gan
,
J. Nucl. Mater.
371
,
281
(
2007
).
2.
S.
Sorieul
,
J. M.
Costantini
,
L.
Gosmain
,
L.
Thomé
, and
J. J.
Grob
,
J. Phys.: Condens. Matter
18
,
5235
(
2006
).
3.
S.
Sorieul
,
J. M.
Costantini
,
L.
Gosmain
,
G.
Calas
, and
J. J.
Grob
,
J. Phys.: Condens. Matter
18
,
8493
(
2006
).
4.
V.
Heera
,
F.
Prokert
,
N.
Schell
,
H.
Seifarth
,
W.
Fukarek
,
M.
Voelskow
, and
W.
Skorupa
,
Appl. Phys. Lett.
70
,
3531
(
1997
).
5.
W.
Jiang
,
W. J.
Weber
,
S.
Thevuthasan
, and
D. E.
McCready
,
Surf. Interface Anal.
27
,
179
(
1999
).
6.
T.
Ohno
,
H.
Onose
,
Y.
Sugawara
,
K.
Asano
,
T.
Hayashi
, and
T.
Yatsuo
,
J. Electron. Mater.
28
,
180
(
1999
).
7.
W.
Jiang
,
Y.
Zhang
,
M. H.
Engelhard
,
W. J.
Weber
,
G. J.
Exarhos
,
J.
Lian
, and
R. C.
Ewing
,
J. Appl. Phys.
101
,
023524
(
2007
).
8.
W. J.
Weber
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
98
(
2000
).
9.
Y.
Zhang
,
W. J.
Weber
,
W.
Jiang
,
A.
Hallén
, and
G.
Possnert
,
J. Appl. Phys.
91
,
6388
(
2002
).
10.
W. J.
Weber
,
N.
Yu
,
L. M.
Wang
, and
N. J.
Hess
,
J. Nucl. Mater.
244
,
258
(
1997
).
11.
L. L.
Snead
and
S. J.
Zinkle
,
1994 Fall Meeting of the Materials Research Society (MRS)
,
Boston, MA
, 28 November–2 December
1994
(unpublished).
12.
C. J.
McHargue
and
J. M.
Williams
,
Nucl. Instrum. Methods Phys. Res. B
80–81
,
889
(
1993
).
13.
W.
Bolse
,
J.
Conrad
,
T.
Rodle
, and
T.
Weber
,
Surf. Coat. Technol.
74–75
,
927
(
1995
).
14.
F.
Harbsmeier
,
J.
Conrad
, and
W.
Bolse
,
Nucl. Instrum. Methods Phys. Res. B
136–138
,
505
(
1998
).
15.
J.
Conrad
,
T.
Rödle
,
T.
Weber
, and
W.
Bolse
,
Nucl. Instrum. Methods Phys. Res. B
118
,
748
(
1996
).
16.
R.
Nipoti
,
E.
Albertazzi
,
M.
Bianconi
,
R.
Lotti
,
G.
Lulli
,
M.
Cervera
, and
A.
Carnera
,
Appl. Phys. Lett.
70
,
3425
(
1997
).
17.
W. J.
Weber
,
L. M.
Wang
,
N.
Yu
, and
N. J.
Hess
,
Mater. Sci. Eng., A
253
,
62
(
1998
).
18.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1985
) (http://www.srim.org/).
19.
R.
Devanathan
and
W. J.
Weber
,
J. Nucl. Mater.
278
,
258
(
2000
).
20.
L.
Nowicki
,
A.
Turos
,
R.
Ratajczak
,
A.
Stonert
, and
F.
Garrido
,
Nucl. Instrum. Methods Phys. Res. B
240
,
277
(
2005
).
21.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
22.
M. F.
Doerner
and
W. D.
Nix
,
J. Mater. Res.
1
,
601
(
1986
).
23.
J. F.
Shackelford
and
W.
Alexander
,
CRC Materials Science and Engineering Handbook
, 3rd ed. (
CRC
,
Boca Raton, FL
,
2001
).
24.
A. A.
Pelegri
and
X.
Huang
,
Compos. Sci. Technol.
68
,
147
(
2008
).
25.
S. J.
Zinkle
and
G. P.
Pells
,
J. Nucl. Mater.
253
,
120
(
1998
).
26.
S. J.
Zinkle
and
L. L.
Snead
,
Nucl. Instrum. Methods Phys. Res. B
116
,
92
(
1996
).
27.
J. F.
Gibbons
,
Proc. IEEE
60
,
1062
(
1972
).
28.
M. C.
Ridgway
,
G. M.
De Azevedo
,
C. J.
Glover
,
K. M.
Yu
, and
G. J.
Foran
,
Nucl. Instrum. Methods Phys. Res. B
199
,
235
(
2003
).
29.
A.
Benyagoub
,
A.
Audren
,
L.
Thomé
, and
F.
Garrido
,
Appl. Phys. Lett.
89
,
241914
(
2006
).
30.
W.
Jiang
,
Y.
Zhang
, and
W. J.
Weber
,
Phys. Rev. B
70
,
165208
(
2004
).
31.
F.
Gao
and
W. J.
Weber
,
Phys. Rev. B
69
,
224108
(
2004
).
32.
J.
Jagielski
and
L.
Thomé
,
Vacuum
81
,
1352
(
2007
).
33.
L. L.
Snead
and
J. C.
Hay
,
J. Nucl. Mater.
273
,
213
(
1999
).
34.
C. W.
White
,
C. J.
McHargue
,
P. S.
Sklad
,
L. A.
Boatner
, and
G. C.
Farlow
,
Mater. Sci. Rep.
4
,
41
(
1989
).
35.
T.
Mura
,
Micromechanics of Defects in Solids
(
Martinus
,
Nijhoff
,
1992
).
36.
F. A.
McClintock
and
A. S.
Argon
,
Mechanical Behaviour of Materials
(
Addison-Wesley
,
Reading, MA
,
1966
).
37.
R.
Thokala
and
J.
Chaudhuri
,
Thin Solid Films
266
,
189
(
1995
).
38.
F.
Gao
and
W. J.
Weber
,
Nucl. Instrum. Methods Phys. Res. B
207
,
10
(
2003
).
39.
S. O.
Kucheyev
,
J. S.
Williams
,
C.
Jagadish
,
J.
Zou
,
V. S. J.
Craig
, and
G.
Li
,
Appl. Phys. Lett.
77
,
1455
(
2000
).
40.
S.
Muto
and
T.
Tanabe
,
J. Appl. Phys.
93
,
3765
(
2003
).
41.
W.
Jiang
,
C. M.
Wang
,
W. J.
Weber
,
M. H.
Engelhard
, and
L. V.
Saraf
,
J. Appl. Phys.
95
,
4687
(
2004
).
42.
M.
Bockstedte
,
A.
Mattausch
, and
O.
Pankratov
,
Phys. Rev. B
68
,
205201
(
2003
).
43.
A. Yu.
Kuznetsov
,
J.
Wong-Leung
,
A.
Hallén
,
C.
Jagadish
, and
B. G.
Swenson
,
J. Appl. Phys.
94
,
7112
(
2003
).
44.
Y.
Zhang
,
W. J.
Weber
,
W.
Jiang
,
V.
Sutthanandan
,
S.
Thevuthasan
,
M.
Janson
, and
A.
Hallén
,
Nucl. Instrum. Methods Phys. Res. B
219–220
,
647
(
2004
).
45.
G. W.
Hollenberg
,
C. H.
Henager
, Jr.
,
G. E.
Youngblood
,
D. J.
Trimble
,
S. A.
Simonson
,
G. A.
Newsome
, and
E.
Lewis
,
J. Nucl. Mater.
219
,
70
(
1995
).
46.
H.
Huang
and
N.
Ghoniem
,
J. Nucl. Mater.
250
,
192
(
1997
).
You do not currently have access to this content.