Cu2(OH)3Cl with an average size of 510μm have been synthesized by a simple hydrothermal reaction with a yield of 100%. After the as-prepared Cu2(OH)3Cl was treated with NaOH solution, the green crystals were converted to blue sisal-like Cu(OH)2 with needle-like nanorods pointing out radially from the core. These nanorods were about 100–200 nm in diameter and 10μm in length. Using the sisal-like Cu(OH)2 as sacrificial precursor, CuO with a well-preserved morphological feature of the precursor was formed through thermal treatment. The samples were characterized by scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, BET nitrogen adsorption, and UV-visible absorption spectroscopy. The conversion of the synthesized Cu2(OH)3Cl to sisal-like Cu(OH)2 was optically visualized and confirmed by corresponding SEM images, and an “etching-and-growing” mechanism was proposed. The results also show that the as-prepared CuO possesses a band gap of 2.27 eV and high specific surface area (75.8m2/g), and its surface is highly rich in O.

1.
S.
Mann
and
G. A.
Ozin
,
Nature (London)
382
,
313
(
1996
).
2.
H.
Yang
,
N.
Coombs
, and
G. A.
Ozin
,
Nature (London)
386
,
692
(
1997
).
3.
T. S.
Ahmadi
,
Z. L.
Wang
,
T. C.
Green
,
A.
Henglein
, and
M. A.
ElSayed
,
Science
272
,
1924
(
1996
).
4.
L. A.
Estroff
and
A. D.
Hamilton
,
Chem. Mater.
13
,
3227
(
2001
).
5.
M.
Antonietti
and
C.
Goltner
,
Angew. Chem., Int. Ed. Engl.
36
,
910
(
1997
).
6.
M.
Li
,
H.
Schnablegger
, and
S.
Mann
,
Nature (London)
402
,
393
(
1999
).
7.
J. P.
Liu
,
X. T.
Huang
,
Y. Y.
Li
,
K. M.
Sulieman
,
X.
He
, and
F. L.
Sun
,
J. Mater. Chem.
16
,
4427
(
2006
).
8.
J.
Chen
,
S. Z.
Deng
,
N. S.
Xu
,
W. X.
Zhang
,
X. G.
Wen
, and
S. H.
Yang
,
Appl. Phys. Lett.
83
,
746
(
2003
).
9.
A.
Chowdhuri
,
V.
Gupta
,
K.
Sreenivas
,
R.
Kumar
,
S.
Mozumdar
, and
P. K.
Patanjali
,
Appl. Phys. Lett.
84
,
1180
(
2004
).
10.
E.
Lucas
,
S.
Decker
,
A.
Khaleel
,
A.
Seitz
,
S.
Fultz
,
A.
Ponce
,
W. F.
Li
,
C.
Carnes
, and
K. J.
Klabunde
,
Chem.-Eur. J.
7
,
2505
(
2001
).
11.
G. L.
Luque
,
M. C.
Rodriguez
, and
G. A.
Rivas
,
Talanta
66
,
467
(
2005
).
12.
J.
Tamaki
,
K.
Shimanoe
,
Y.
Yamada
,
Y.
Yamamoto
,
N.
Miura
, and
N.
Yamazoe
,
Sens. Actuators B
49
,
121
(
1998
).
13.
H. B.
Wang
,
Q. M.
Pan
,
H. W.
Zhao
,
G. P.
Yin
, and
P. J.
Zuo
,
J. Power Sources
167
,
206
(
2007
).
14.
X. G.
Zheng
,
C. N.
Xu
,
Y.
Tomokiyo
,
E.
Tanaka
,
H.
Yamada
, and
Y.
Soejima
,
Phys. Rev. Lett.
85
,
5170
(
2000
).
15.
A. M.
Cao
,
J. D.
Monnell
,
C.
Matranga
,
J. M.
Wu
,
L. L.
Cao
, and
D.
Gao
,
J. Phys. Chem. C
111
,
18624
(
2007
).
16.
R.
Vijaya Kumar
,
R.
Elgamiel
,
Y.
Diamant
,
A.
Gedanken
, and
J.
Norwig
,
Langmuir
17
,
1406
(
2001
).
17.
S. Z.
Li
,
H.
Zhang
,
Y. J.
Ji
, and
D. R.
Yang
,
Nanotechnology
15
,
1428
(
2004
).
18.
Q.
Liu
,
H. J.
Liu
,
Y. Y.
Liang
,
Z.
Xu
, and
G.
Yin
,
Mater. Res. Bull.
41
,
697
(
2006
).
19.
H. M.
Xiao
,
S. Y.
Fu
,
L. P.
Zhu
,
Y. Q.
Li
, and
G.
Yang
,
Eur. J. Inorg. Chem.
2007
,
1966
(
2007
).
20.
H. M.
Xiao
,
L. P.
Zhu
,
X. M.
Liu
, and
S. Y.
Fu
,
Solid State Commun.
141
,
431
(
2007
).
21.
X. C.
Jiang
,
T.
Herricks
, and
Y. N.
Xia
,
Nano Lett.
2
,
1333
(
2002
).
22.
X. Y.
Song
,
S. X.
Sun
,
W. M.
Zhang
,
H. Y.
Yu
, and
W. L.
Fan
,
J. Phys. Chem. B
108
,
5200
(
2004
).
23.
C. H.
Lu
,
L. M.
Qi
,
J. H.
Yang
,
D. Y.
Zhang
,
N. Z.
Wu
, and
J. M.
Ma
,
J. Phys. Chem. B
108
,
17825
(
2004
).
24.
L. Z.
Zhang
,
J. C.
Yu
,
A. W.
Xu
,
Q.
Li
,
K. W.
Kwong
, and
S. H.
Yu
,
J. Cryst. Growth
266
,
545
(
2004
).
25.
S. C.
Lee
,
S. H.
Park
,
S. M.
Lee
,
J. B.
Lee
, and
H. J.
Kim
,
Catal. Today
120
,
358
(
2007
).
26.
J. S.
Xu
and
D. F.
Xue
,
J. Phys. Chem. B
109
,
17157
(
2005
).
27.
C. L.
Zhu
,
C. N.
Chen
,
L. Y.
Hao
,
Y.
Hu
, and
Z. Y.
Chen
,
Solid State Commun.
130
,
681
(
2004
).
28.
C. L.
Zhu
,
C. N.
Chen
,
L. Y.
Hao
,
Y.
Hu
, and
Z. Y.
Chen
,
J. Cryst. Growth
263
,
473
(
2004
).
29.
B.
Liu
and
H. C.
Zeng
,
J. Am. Chem. Soc.
126
,
8124
(
2004
).
30.
S. H.
Park
and
H. J.
Kim
,
J. Am. Chem. Soc.
126
,
14368
(
2004
).
31.
JCPDS Report No. 25-1427.
32.
JCPDS Report No. 13-0420.
33.
JCPDS Report No. 72-0629.
34.
H.
Wang
,
J. Z.
Xu
,
J. J.
Zhu
, and
H. Y.
Chen
,
J. Cryst. Growth
244
,
88
(
2002
).
35.
J. W.
Zhu
,
H. Q.
Chen
,
H. B.
Liu
,
X. J.
Yang
,
L. D.
Lu
, and
W.
Xin
,
Mater. Sci. Eng., A
384
,
172
(
2004
).
36.
G. F.
Zou
,
H.
Li
,
D. W.
Zhang
,
K.
Xiong
,
C.
Dong
, and
Y. T.
Qian
,
J. Phys. Chem. B
110
,
1632
(
2006
).
37.
J. P.
Liu
,
X. T.
Huang
,
Y. Y.
Li
,
K. M.
Sulieman
,
X.
He
, and
F.
Sun
,
Cryst. Growth Des.
6
,
1690
(
2006
).
38.
J. P.
Yang
,
F. C.
Meldrum
, and
J. H.
Fendler
,
J. Phys. Chem.
99
,
5500
(
1995
).
39.
M. H.
Chou
,
S. B.
Liu
,
C. Y.
Huang
,
S. Y.
Wu
, and
C. L.
Cheng
,
Appl. Surf. Sci.
254
,
7539
(
2008
).
40.
K.
Borgohain
,
J. B.
Singh
,
M. V. R.
Rao
,
T.
Shripathi
, and
S.
Mahamuni
,
Phys. Rev. B
61
,
11093
(
2000
).
41.
Y. C.
Zhang
,
J. Y.
Tang
,
G. L.
Wang
,
M.
Zhang
, and
X. Y.
Hu
,
J. Cryst. Growth
294
,
278
(
2006
).
42.
J. F.
Xu
,
W.
Ji
,
Z. X.
Shen
,
S. H.
Tang
,
X. R.
Ye
,
D. Z.
Jia
, and
X. Q.
Xin
,
J. Solid State Chem.
147
,
516
(
1999
).
You do not currently have access to this content.