Granular multilayers with were prepared by sequential pulsed laser deposition. Transmission electron microscopy (TEM) images show that increasing causes the growth of the sizes of Fe nanoparticles and broadening of the particle size distribution. For , continuous Fe layers are formed. The evolution of the shapes and sizes of the particles is reflected in the magnetic properties of the investigated films. A crossover from superparamagnetic to ferromagnetic behavior upon formation of a continuous Fe layer is observed. The fit of zero field cooled and field cooled susceptibility measurements and magnetization curves using Curie–Weiss law and a weighted sum of Langevin functions, respectively, allows the estimation of the average granule size for the films with . The results of the estimations correlate with the data obtained from TEM images. Reduction of saturation magnetization for Fe nanoparticles and an increase of the coercivity up to at low temperatures were found. It is attributed to the formation of Fe-core∕-shell structured nanocrystals. The oxide shell gives rise to a strong contribution of surface anisotropy. Isotropic tunneling magnetoresistance up to at room temperature and in magnetic field up to was found for the film with . For higher , an anisotropic magnetoresistance typical for continuous ferromagnetic films was observed.
Skip Nav Destination
Article navigation
15 March 2009
Research Article|
March 20 2009
Magnetic properties of granular multilayers prepared by pulsed laser deposition
A. García-García;
A. García-García
1Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-CSIC
, 50009-Zaragoza, Spain
2Departamento de Física de la Materia Condensada,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
Search for other works by this author on:
A. Vovk;
A. Vovk
a)
2Departamento de Física de la Materia Condensada,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
3Instituto de Nanociencia de Aragón,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
4Institute of Magnetism,
NAS of Ukraine
, 36-b Vernnadsky Blvd., 03142, Kyiv, Ukraine
Search for other works by this author on:
J. A. Pardo;
J. A. Pardo
3Instituto de Nanociencia de Aragón,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
5Departamento de Ciencia y Tecnología de Materiales y Fluidos,
Universidad de Zaragoza
, 50018-Zaragoza, Spain
Search for other works by this author on:
P. Štrichovanec;
P. Štrichovanec
3Instituto de Nanociencia de Aragón,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
Search for other works by this author on:
C. Magén;
C. Magén
3Instituto de Nanociencia de Aragón,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
6Centre d’Elaboration de Matériaux et d’Etudes Structurales,
CNRS
, 31055-Toulouse, France
Search for other works by this author on:
E. Snoeck;
E. Snoeck
6Centre d’Elaboration de Matériaux et d’Etudes Structurales,
CNRS
, 31055-Toulouse, France
Search for other works by this author on:
P. A. Algarabel;
P. A. Algarabel
1Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-CSIC
, 50009-Zaragoza, Spain
2Departamento de Física de la Materia Condensada,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
Search for other works by this author on:
J. M. De Teresa;
J. M. De Teresa
1Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-CSIC
, 50009-Zaragoza, Spain
2Departamento de Física de la Materia Condensada,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
Search for other works by this author on:
L. Morellón;
L. Morellón
1Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-CSIC
, 50009-Zaragoza, Spain
2Departamento de Física de la Materia Condensada,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
3Instituto de Nanociencia de Aragón,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
Search for other works by this author on:
M. R. Ibarra
M. R. Ibarra
1Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-CSIC
, 50009-Zaragoza, Spain
2Departamento de Física de la Materia Condensada,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
3Instituto de Nanociencia de Aragón,
Universidad de Zaragoza
, 50009-Zaragoza, Spain
Search for other works by this author on:
a)
Electronic mail: avovk@unizar.es.
J. Appl. Phys. 105, 063909 (2009)
Article history
Received:
October 21 2008
Accepted:
February 05 2009
Citation
A. García-García, A. Vovk, J. A. Pardo, P. Štrichovanec, C. Magén, E. Snoeck, P. A. Algarabel, J. M. De Teresa, L. Morellón, M. R. Ibarra; Magnetic properties of granular multilayers prepared by pulsed laser deposition. J. Appl. Phys. 15 March 2009; 105 (6): 063909. https://doi.org/10.1063/1.3093945
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Selecting alternative metals for advanced interconnects
Jean-Philippe Soulié, Kiroubanand Sankaran, et al.
Defects in semiconductors
Cyrus E. Dreyer, Anderson Janotti, et al.
Related Content
Anomalous magnetic nanostructural evolution in annealed CuCo granular thin films
Appl. Phys. Lett. (June 2006)
Tunneling magnetoresistance in Fe/MgO granular multilayers
J. Appl. Phys. (February 2010)
Magnetic and transport properties of NiMnAl thin films
J. Appl. Phys. (April 2006)
Tunneling magnetoresistance in epitaxial discontinuous Fe/MgO multilayers
Appl. Phys. Lett. (March 2011)
Structure and giant magnetoresistance of granular Co–Cu nanolayers prepared by cross-beam pulsed laser deposition
J. Appl. Phys. (January 2010)