The nitration of gold surfaces is a nonpolluting method, which can lead to large scale production of substrates with remarkable properties and applications. We present a topographical study of the nanoscale structure of the gold nitride surfaces produced by radio frequency (rf) nitrogen plasma etching of thin gold films. Atomic force microscopy images taken after rf etching reveal the striking appearance of the cluster assembly with large clusters surrounded by small clusters (7.9±1.4 and 2.3±0.9nm, respectively) appearing to exhibit an attractive interaction. We discuss the possible mechanism for this attraction based on a colloid model by Messina et al [Phys. Rev. Lett.85, 872 (2000)]. This surface exhibits a notable surface enhanced Raman scattering effect demonstrated with L-alanine and rhodamine-6G. The significance of this work is that we found that this SERS active gold nitride surface can be prepared in just one step: by nitrogen plasma etching a thin gold film. Until now most SERS active gold cluster covered surfaces have been prepared in several steps very often requiring complex lithography.

1.
J. C.
Crowhurst
,
A. F.
Goncharov
,
B.
Sadigh
,
C. L.
Evans
,
P. G.
Morrall
,
J. L.
Ferreira
, and
A. J.
Nelson
,
Science
311
,
1275
(
2006
).
2.
L.
Šiller
,
M. R. C.
Hunt
,
J. W.
Brown
,
J. M.
Coquel
, and
P.
Rudolf
,
Surf. Sci.
513
,
78
(
2002
).
3.
A. F.
Young
,
C.
Sanloup
,
E.
Gregoryanz
,
S.
Scandolo
,
R. J.
Hemley
, and
H. K.
Mao
,
Phys. Rev. Lett.
96
,
155501
(
2006
).
4.
S.
Krishnamurthy
,
M.
Montalti
,
M. G.
Wardle
,
M. J.
Shaw
,
P. R.
Briddon
,
K.
Svensson
,
M. R. C.
Hunt
, and
L.
Šiller
,
Phys. Rev. B
70
,
045414
(
2004
).
5.
L.
Šiller
,
N.
Peltekis
,
S.
Krishnamurthy
,
Y.
Chao
,
S. J.
Bull
, and
M. R. C.
Hunt
,
Appl. Phys. Lett.
86
,
221912
(
2005
).
6.
K.
Drenck
,
P.
Hvelplund
,
C. J.
McKenzie
, and
S. B.
Nielsen
,
Int. J. Mass Spectrom.
244
,
144
(
2005
).
7.
L.
Šiller
,
S.
Krishnamurthy
, and
Y.
Chao
, UK Patent No. GB 0413036.5, WO 2005/121395 (
2005
).
8.
L.
Alves
,
T. P. A.
Hase
,
M. R. C.
Hunt
,
A. C.
Brieva
, and
L.
Šiller
,
J. Appl. Phys.
104
,
113527
(
2008
).
9.
A. P.
Caricato
,
M.
Fernandez
,
G.
Leggieri
,
A.
Luches
,
M.
Martino
,
F.
Romano
,
T.
Tunno
,
D.
Valerini
,
A.
Verdyan
,
Y. M.
Soifer
,
J.
Azoulay
, and
L.
Meda
,
Appl. Surf. Sci.
253
,
8037
(
2007
).
10.
A.
Devia
,
H. A.
Castillo
,
V. J.
Benavides
,
Y. C.
Arango
, and
J. H.
Quintero
,
Mater. Charact.
59
,
105
(
2008
).
11.
Y. V.
Butenko
,
L.
Alves
,
A. C.
Brieva
,
J.
Yang
,
S.
Krishnamurthy
, and
L.
Šiller
,
Chem. Phys. Lett.
430
,
89
(
2006
).
12.
D.
Cialla
,
U.
Hubner
,
H.
Schneidewind
,
R.
Moller
, and
J.
Poop
,
ChemPhysChem
9
,
758
(
2008
).
13.
F.
Li
,
Y.
Lu
,
G.
Xue
, and
G.
Cao
,
Chem. Phys. Lett.
264
,
376
(
1997
).
14.
M. C.
Dixon
,
T. A.
Daniel
,
M.
Hieda
,
D. M.
Smilgies
,
M. H. W.
Chan
, and
D. L.
Allara
,
Langmuir
23
,
2414
(
2007
).
15.
J. V.
Zoval
,
P. R.
Biernacki
, and
R. M.
Penner
,
Anal. Chem.
68
,
1585
(
1996
).
16.
D. M.
Zhang
,
Y.
Xie
,
M. F.
Mrozek
,
C.
Ortiz
,
V. J.
Davisson
, and
D.
Ben-Amotz
,
Anal. Chem.
75
,
5703
(
2003
).
17.
C.
Ortiz
,
D. M.
Zhang
,
Y.
Xie
,
A. E.
Ribbe
, and
D.
Ben-Amotz
,
Anal. Biochem.
353
,
157
(
2006
).
18.
A.
Kudelski
,
Chem. Phys. Lett.
414
,
271
(
2005
).
19.
S. M.
Nie
and
S. R.
Emery
,
Science
275
,
1102
(
1997
).
20.
Y.
Levin
,
Rep. Prog. Phys.
65
,
1577
(
2002
).
21.
J. C.
Crocker
and
D. G.
Grier
,
Phys. Rev. Lett.
77
,
1897
(
1996
).
22.
Y. L.
Han
and
D. G.
Grier
,
Phys. Rev. Lett.
91
,
038302
(
2003
).
23.
G. M.
Kepler
and
S.
Fraden
,
Phys. Rev. Lett.
73
,
356
(
1994
).
24.
A. E.
Larsen
and
D. G.
Grier
,
Nature (London)
385
,
230
(
1997
).
25.
K.
Ito
,
H.
Yoshida
, and
N.
Ise
,
Science
263
,
66
(
1994
).
26.
R.
Messina
,
C.
Holm
, and
K.
Kremer
,
Phys. Rev. Lett.
85
,
872
(
2000
).
27.
E.
Allahyarov
,
I.
D’Amico
, and
H.
Lowen
,
Phys. Rev. Lett.
81
,
1334
(
1998
).
28.
T. M.
Squires
and
M. P.
Brenner
,
Phys. Rev. Lett.
85
,
4976
(
2000
).
29.
P.
Linse
and
V.
Lobaskin
,
Phys. Rev. Lett.
83
,
4208
(
1999
).
30.
We performed test measurements where we used AFM to measure the topography of gold nitride formed by the plasma method when the surface of the gold nitride is in direct contact with a metal, “metal sample,” and when it was completely insulated, we used a polyamide film as a substrate and deposited first the gold by argon sputtering, then we isolated the sample from any metal parts in the plasma chamber in order to etch the surface. We observed that the clusters produced on insulated sample are much smaller in size than on “metal” sample. We could not observe any of the features presented in this work on metal samples (data not presented here).
31.
M.
Fleischmann
,
P. J.
Hendra
, and
A. J.
McQuilla
,
Chem. Phys. Lett.
26
,
163
(
1974
).
32.
D. L.
Jeanmaire
and
R. P.
Vanduyne
,
J. Electroanal. Chem.
84
,
1
(
1977
).
33.
T.
Jensen
,
L.
Kelly
,
A.
Lazarides
, and
G. C.
Schatz
,
J. Cluster Sci.
10
,
295
(
1999
).
34.
H. X.
Xu
,
Appl. Phys. Lett.
85
,
5980
(
2004
).
35.
H.
Susi
and
D. M.
Byler
,
J. Mol. Struct.
63
,
1
(
1980
).
36.
C. H.
Wang
and
R. D.
Storms
,
J. Chem. Phys.
55
,
3291
(
1971
).
37.
J.
Schwarz
,
C.
Contescu
, and
K.
Putyera
,
Dekker Encyclopedia of Nanoscience and Nanotechnology
(
Taylor & Francis
,
London
,
2004
), Vol.
4
, p.
2698
.
You do not currently have access to this content.