We present first-principles investigations on the structural, electronic, and polarization properties of Bi2ZnTiO6 using density-functional theory within the generalized gradient approximation. The theoretical structure we obtained confirms the extra large tetragonality observed by experiment. The materials exhibit a semiconductor behavior with an indirect band gap determined by the occupied O 2p and unoccupied Bi 6p states. There are strong hybridization effects between Bi–O ions, as well as Ti–O and Zn–O ones. The resulting covalent bondings, having a PbTiO3-type two-dimensional character, strengthen each other and favor the coupling between the tetragonal distortion of unit cell and the off-center displacement of A and B-site cations and O anions due to the existence of Zn, and result in the large tetragonality of this compound. Berry-phase calculation gives the polarization as high as 122μC/cm2.

1.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spaldin
,
K. M.
Rabe
,
M.
Wuttig
, and
R.
Ramesh
,
Science
299
,
1719
(
2003
).
2.
A. K.
Tagantsev
,
I.
Stolichnov
,
N.
Setter
,
J. S.
Cross
, and
M.
Tsukada
,
Phys. Rev. B
66
,
214109
(
2002
).
3.
T.
Kimura
,
S.
Kawamoto
,
I.
Yamada
,
M.
Azuma
,
M.
Takano
, and
Y.
Tokura
,
Phys. Rev. B
67
,
180401
(
2003
).
4.
R.
Eitel
,
C. A.
Randall
,
T. R.
Shrout
,
P.
Rehrig
,
W.
Hackenberger
, and
S. -E.
Park
,
Jpn. J. Appl. Phys., Part 1
40
,
5999
(
2001
).
5.
R.
Eitel
,
C. A.
Randall
,
T. R.
Shrout
, and
S. E.
Park
,
Jpn. J. Appl. Phys., Part 1
41
,
2099
(
2002
).
6.
S. J.
Zhang
,
C. A.
Randall
, and
T. R.
Shrout
,
Appl. Phys. Lett.
83
,
3150
(
2003
).
7.
J. R.
Cheng
,
W. Y.
Zhu
,
N.
Li
, and
L. E.
Cross
,
Mater. Lett.
57
,
2090
(
2003
).
8.
R. R.
Duan
,
R. F.
Speyer
,
E.
Alberta
, and
T. R.
Shrout
,
J. Mater. Res.
19
,
2185
(
2004
).
9.
Y.
Inaguma
,
A.
Miyaguchi
,
M.
Yoshida
,
T.
Katsumata
,
Y.
Shimojo
,
R. P.
Wang
, and
T.
Sekiya
,
J. Appl. Phys.
95
,
231
(
2004
).
10.
S. J.
Zhang
,
R.
Xia
,
C. A.
Randall
,
T. R.
Shrout
,
R. R.
Duan
, and
R. F.
Speyer
,
J. Mater. Res.
20
,
2067
(
2005
).
11.
P.
Baettig
,
C. F.
Schelle
,
R.
LeSar
,
U. V.
Waghmare
, and
N. A.
Spaldin
,
Chem. Mater.
17
,
1376
(
2005
).
12.
H.
Wang
,
B.
Wang
,
Q. K.
Li
,
Z. Y.
Zhu
,
R.
Wang
, and
C. H.
Woo
,
Phys. Rev. B
75
,
245209
(
2007
).
13.
A. A.
Belik
,
M.
Takano
,
M. V.
Boguslavsky
,
S. Y.
Stefanovich
, and
B. I.
Lazoryak
,
Chem. Mater.
18
,
133
(
2006
).
14.
A. A.
Belik
,
S.
Iikubo
,
K.
Kodama
,
N.
Igawa
,
S.
Shamoto
,
M.
Maie
,
T.
Nagai
,
Y.
Matsui
,
S. Y.
Stefanovich
,
B. I.
Lazoryak
, and
E.
Takayama-Muromachi
,
J. Am. Chem. Soc.
128
,
706
(
2006
).
15.
A. A.
Belik
,
S.
Iikubo
,
K.
Kodama
,
N.
Igawa
,
S.
Shamoto
,
S.
Niitaka
,
M.
Azuma
,
Y.
Shimakawa
,
M.
Takano
,
F.
Izumi
, and
E.
Takayama-Muromachi
,
Chem. Mater.
18
,
798
(
2006
).
16.
A. A.
Belik
,
S. Y.
Stefanovich
,
B. I.
Lazoryak
, and
E.
Takayama-Muromachi
,
Chem. Mater.
18
,
1964
(
2006
).
17.
Y.
Inaguma
and
T.
Katsumata
,
Ferroelectrics
286
,
111
(
2003
).
18.
M.
Azuma
,
K.
Takata
,
T.
Saito
,
S.
Ishiwata
,
Y.
Shimakawa
, and
M.
Takano
,
J. Am. Chem. Soc.
127
,
8889
(
2005
).
19.
D. D.
Khalyavin
,
A. N.
Salak
,
N. P.
Vyshatko
,
A. B.
Lopes
,
N. M.
Olekhnovich
, and
A. V.
Pushkarev Maroz
, II
, and
Y. V.
Radyush
,
Chem. Mater.
18
,
5104
(
2006
).
20.
M. R.
Suchomel
,
A. M.
Fogg
,
M.
Allix
,
H. J.
Niu
,
J. B.
Claridge
, and
M. J.
Rosseinsky
,
Chem. Mater.
18
,
4987
(
2006
);
M. R.
Suchomel
,
A. M.
Fogg
,
M.
Allix
,
H. J.
Niu
,
J. B.
Claridge
, and
M. J.
Rosseinsky
,
Chem. Mater.
18
,
5810
(
2006
).
21.
J.
Chen
,
P.
Hu
,
X.
Sun
,
C.
Sun
, and
X.
Xing
,
Appl. Phys. Lett.
91
,
171907
(
2007
).
22.
Y. K.
Kim
,
S. S.
Kim
,
H.
Shin
, and
S.
Baik
,
Appl. Phys. Lett.
84
,
5085
(
2004
).
23.
I.
Grinberg
,
M. R.
Suchomel
,
W.
Dmowski
,
S. E.
Mason
,
H.
Wu
,
P. K.
Davies
, and
A. M.
Rappe
,
Phys. Rev. Lett.
98
,
107601
(
2007
).
24.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
, WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Vienna,
2001
.
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
P. E.
Blochl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
27.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
28.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
);
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
29.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
);
30.
D.
Vanderbilt
and
R. D.
King-Smith
,
Phys. Rev. B
48
,
4442
(
1993
).
31.
C.
Kittel
,
Introduction to Solid State Physics
, 6th ed. (
McGraw-Hill
,
New York
,
1986
), p.
76
.
32.
M. Q.
Cai
,
Z.
Yin
,
M. S.
Zhang
, and
Y. Z.
Li
,
Chem. Phys. Lett.
399
,
89
(
2004
).
33.
Z.
Wu
and
R. E.
Cohen
,
Phys. Rev. Lett.
95
,
037601
(
2005
).
34.
S.
Tinte
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. B
68
,
144105
(
2003
).
35.
H.
Huang
,
C. Q.
Sun
,
Z.
Tianshu
, and
P.
Hing
,
Phys. Rev. B
63
,
184112
(
2001
).
36.
H.
Huang
,
C. Q.
Sun
, and
P.
Hing
,
J. Phys.: Condens. Matter
12
,
L127
(
2000
).
37.
Y.
Kuroiwa
,
S.
Aoyagi
, and
A.
Sawada
,
Phys. Rev. Lett.
87
,
217601
(
2001
).
38.
R.
Yu
and
H.
Krakauer
,
Phys. Rev. Lett.
74
,
4067
(
1995
).
39.
Y. X.
Wang
,
C. L.
Wang
,
M. L.
Zhao
, and
J. L.
Zhang
,
Chin. Phys. Lett.
22
,
469
(
2005
).
40.
R. E.
Cohen
,
Nature (London)
358
,
136
(
1992
).
You do not currently have access to this content.