This paper presents an original investigation of the motion at the band crossing points in the energy dispersion of either bulk crystals or inversion layers. In particular, by using a formalism based on the time dependent Schrödinger equation, we address the quite elusive topic of the belonging of the carriers to the bands that are degenerate at the crossing point. This problem is relevant and delicate for the semiclassical transport modeling in numerically calculated band structures; however, its clarification demands a full-quantum transport treatment. We here propose analytical derivations and numerical calculations clearly demonstrating that, in a given band structure, the motion of the carriers at the band crossing points is entirely governed by the overlap integrals between the eigenfunctions of the Hamiltonian that has produced the same band structure. Our formulation of the problem is quite general and we apply it to the silicon conduction band calculated by means of the nonlocal pseudopotential method, to the hole inversion layers described by a quantized kp approach, and to the electron inversion layers described by the effective mass approximation method. In all the physical systems, our results underline the crucial role played by the abovementioned overlap integrals.

1.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
2.
M. V.
Fischetti
and
S. E.
Laux
,
Phys. Rev. B
38
,
9721
(
1988
).
3.
K.
Hess
, in
Monte Carlo device simulation: Full Band and Beyond
, edited by
K.
Hess
(
Kluwer
,
Dordrecht
,
1991
).
4.
M. V.
Fischetti
and
S. E.
Laux
,
Phys. Rev. B
48
,
2244
(
1993
).
5.
C.
Jungemann
,
A.
Edmunds
, and
W. L.
Engl
,
Solid-State Electron.
36
,
1529
(
1993
).
6.
K.
Hess
,
Advanced Theory of Semiconductor Devices
(
IEEE
,
New York
,
1999
).
7.
D.
Esseni
,
A.
Abramo
,
L.
Selmi
, and
E.
Sangiorgi
,
IEEE Trans. Electron Devices
50
,
2445
(
2003
).
8.
L.
Lucci
,
P.
Palestri
,
D.
Esseni
,
L.
Bergagnini
, and
L.
Selmi
,
IEEE Trans. Electron Devices
54
,
1156
(
2007
).
9.
S.
Datta
,
Quantum Transport, Atom to Transistor
(
Cambridge University Press
,
Cambridge, UK
,
2005
).
10.
D.
Esseni
and
P.
Palestri
,
Phys. Rev. B
72
,
165342
(
2005
).
11.
T.
Ando
,
A.
Fowler
, and
F.
Stern
,
Rev. Mod. Phys.
54
,
437
(
1982
).
12.
D. K.
Ferry
and
S. M.
Goodnick
,
Transport in Nanostructures
(
Cambridge University Press
,
Cambridge, UK
,
1997
).
13.
R.
Oberhuber
,
G.
Zandler
, and
P.
Vogl
,
Phys. Rev. B
58
,
9941
(
1998
).
14.
M. V.
Fischetti
,
Z.
Ren
,
P. M.
Solomon
,
M.
Yang
, and
K.
Rim
,
J. Appl. Phys.
94
,
1079
(
2003
).
15.
E.
Wang
,
P.
Montagne
,
L.
Shifren
,
B.
Obradovic
,
R.
Kotlyar
,
S.
Cea
,
M.
Stettler
, and
M. G.
Giles
,
IEEE Trans. Electron Devices
53
,
1840
(
2006
).
16.
A. T.
Pham
,
C.
Jungemann
, and
B.
Meinerzhagen
,
Proceedings of the European Solid State Device Research Conference (ESSDERC)
,
2007
(unpublished), p.
390
.
17.
J. R.
Chelikowsky
and
M. L.
Cohen
,
Phys. Rev. B
14
,
556
(
1976
).
18.
T.
Manku
and
A.
Nathan
,
J. Appl. Phys.
73
,
1205
(
1993
).
19.
M.
De Michielis
,
D.
Esseni
,
Y. L.
Tsang
,
P.
Palestri
,
L.
Selmi
,
A. O.
Neill
, and
S.
Chattopadhyay
,
IEEE Trans. Electron Devices
54
,
2164
(
2007
).
20.
M.
Bescond
,
N.
Cavassilas
, and
M.
Lannoo
,
Nanotechnology
18
,
255201
(
2007
).
21.
F.
Stern
and
W. E.
Howard
,
Phys. Rev.
163
,
816
(
1967
).
22.
T.
Low
,
Y. T.
Hou
,
M. F.
Li
,
C.
Zhu
,
A.
Chin
,
G.
Samudra
,
L.
Chan
, and
D. L.
Kwong
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
691
.
23.
S. E.
Laux
,
Tech. Dig. - Int. Electron Devices Meet.
2004
,
135
.
You do not currently have access to this content.